NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

IMPLEMENTING CLOSED-LOOP CONTROL
ALGORITHMS FOR DC-TO-DC CONVERTERS AND
ARCP INVERTERS USING THE UNIVERSAL
CONTROLLER
by
Ronald J. Hanson

June, 1997

Thesis Advisor: John G. Ciezki

Approved for public release; distribution is unlimited.

DTIC QUALITY INNEPEUTED 3

REPORT DOCUMENTATION PAGE Fom Approved OMB No. 07040158

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and

Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1997 Master’s Thesis
4. TITLE AND SUBTITLE IMPLEMENTING CLOSED-LOOP CONTROL 5. FUNDING NUMBERS

ALGORITHMS FOR DC-TO-DC CONVERTERS AND ARCP INVERTERS
USING THE UNIVERSAL CONTROLLER

6. AUTHOR(S) Ronald J. Hanson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

The objective of this thesis is to investigate the use of the Universal Controller to control the
DC-to-DC power converter and the Auxiliary Resonant Commutated Pole (ARCP) power inverter.
These power electronic devices are central to the development of a DC Zonal Electric Distribution
System (DC ZEDS) that is scheduled for application in the twenty-first century surface combatant
(SC-21). The development of appropriate closed-loop controls is a key element to this design process.
The Universal Controller is a digital controller that was developed by personnel at the Naval Surface
Warfare Center (NSWC), Annapolis, Maryland. The basic operation and control of the DC-to-DC
buck converter and the ARCP inverter are described, with emphasis placed on the advantages of DSP
control. A complete investigation of the hardware that comprises the controller and how to program
the controller to implement closed-loop control is undertaken.

Previous studies have developed control algorithms that have been tested through simulation
and analog hardware. In this research endeavor these control algorithms, particularly the one relevant
to the DC-to-DC converter, are implemented using the Universal Controller to validate operations.
Finally, a flow path for implementing the closed-loop control of the ARCP unit is discussed and
recommendations for improvements in future designs are outlined.

14. SUBJECT TERMS dc-to-dc buck converter, auxiliary resonant commutated pole 15. NUMBER OF
converter, universal controller, dsp control of power converters, texas instruments PAGES 149
tms320¢30

16. PRICE CODE

17. SECURITY CLASSIFICA- | 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFICA- | 20. LIMITATION OF
TION OF REPORT CATION OF THIS PAGE TION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

Approved for public release; distribution is unlimited.

IMPLEMENTING CLOSED-LOOP CONTROL ALGORITHMS FOR DC-TO-DC

CONVERTERS AND ARCP INVERTERS USING THE UNIVERSAL
CONTROLLER

Ronald J. Hanson
Lieutenant, United States Navy

B.S., University of North Dakota, 1988

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

June 1997
Y
Author:)f (nwj/ /i I%MAW\

Ronald J. Hanson

Approved by:

Department of Electrical and Computer Engineering

. DIICQUALITY INSPECTED 3

Preceding Page Blank

ABSTRACT

The objective of this thesis is to investigate the use of the Universal Controller to
control the DC-to-DC power converter and the Auxiliary Resonant Commutated Pole
(ARCP) power inverter. These power electronic devices are central to the development of
a DC Zonal Electric Distribution System (DC ZEDS) that is scheduled for application in
the twenty-first century surface combatant (SC-21). The development of appropriate
closed-loop controls is a key element to this design process. The Universal Controller is
a digital controller that was developed by personnel at the Naval Surface Warfare Center
(NSWC), Annapolis, Maryland. The basic operation and control of the DC-to-DC buck
converter and the ARCP inverter are described, with emphasis placed on the advantages
of DSP control. A complete investigation of the hardware that comprises the controller
and how to program the controller to implement closed-loop control is undertaken.

Previous studies have developed control algorithms that have been tested through
simulation and analog hardware. In this research endeavor these control algorithms,
particularly the one relevant to the DC-to-DC converter, are implemented using the
Universal Controller to validate operations. Finally, a flow path for implementing the
closed-loop control of the ARCP unit is discussed and recommendations for

improvements in future designs are outlined.

Preceding Page Blank

TABLE OF CONTENTS

L. INTRODUCTION.......oootiiiiecreceieeeeeteeeeeteeseeeeaeeeeeeaeteseeseesssesssessssesseee s eee e e 1
A. DC ZONAL ELECTRICAL DISTRIBUTION SYSTEM...oooooeeeeeoeeeeeeeen 1
B. RESEARCH FOCUSoooiotiiiitteeeteeeee et eeeeeseeeeessereesssssesse st esseseseesee e 2
II. POWER CONVERTERSt ieeteeeeeeeeee et e e e eee et 5
A. INTRODUCTION ..ottt eeeeseeeeeeeseesseeeesessesssess e e e st oo 5
B. DC-TO-DC CONVERTERcoeo ettt 5
C. DC-TO-AC INVERTERootioeeeeeeeeeeeeeee e e oo e 11
III. DSPHARDWARE.......ocoo ottt e e et e e e e e e ettt 21
A. INTRODUCTION......uooteetetitiiteceeceeetev e ee et eseeeeeeeeseee e ese e e 21
B. COMMERCIAL DSP BOARDS ...t ee e eeeee e e 22
C. NSWC PEBB UNIVERSAL CONTROLLERouveeeeee oo 24
IV. DSP SOFTWARE AND FIRMWARE ... oo 39
A. INTRODUCTION........ootititieietieeeeeeeeeeeeeeeereeseeesesseeseeeses e e e, 39
B. NSWC PROVIDED SOFTWARE AND FIRMWARE ..o 40
C. TMS320C30 FIRMWARE.......c.oeoteeeeeeeeeeeeee e e 46
V. DSP CONTROL IMPLEMENTATION ..ot 57
A. INTRODUCGTIONooteeteieiteee e eeee oo eeeee e e et 57
B. DC-TO-DC CONVERTER DSP CONTROL IMPLEMENTATION ..., 57
C. ARCP INVERTER DSP CONTROL IMPLEMENTATION ..o 79
VI CONCLUSIONS ...ttt ee e e e e e e e e 93
A. SUMMARY OF RESEARCH WORKcooveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeoe 93
B. NOTABLE CONCLUSIONS ...t tteeteeee oot 94
C. RECOMMENDATIONS FOR FUTURE WORK ..o 94
APPENDIX A. PARTS LISTING FOR THE UNIVERSAL CONTROLLER 97
APPENDIX B. SCHEMATICS FOR THE UNIVERSAL CONTROLLER ..o, 101
APPENDIX C. SOFTWARE INSTALLATION ..o 107
A. HOSTPC SOFTWARE ..o 107
B. INSTALLING CODE ON THE EPROMS. ..o 108
C. MICROCONTROLLER SOFTWARE ..o oot 110
D. PROGRAMMABLE LOGIC DEVICES (PLDs) et 111
APPENDEX D. ASSEMBLY CODE FOR DC-TO-DC CONVERTER...oomooo 113
LIST OF REFERENCES ..ottt e e eeeeeeee e e e e e 137
vii

Preceding Page Blank

INITIAL DISTRIBUTION LIST

viii

A.

L INTRODUCTION

DC ZONAL ELECTRICAL DISTRIBUTION SYSTEM

Improvements in semiconductor technology have sparked a power electronics

revolution. In order to best take advantage of these improvements, a new architecture for

shipboard power distribution has been proposed called the DC Zonal Electrical

Distribution System (DC ZEDS) [Ref. 1]. In this new distribution proposal, the main

busses are DC with desired levels being 1000 V and above. The ship is divided into

zones, and each zone contains two common energy conversion devices which are fed

<

>

G:ENZ AC DC
RECTIFIER
ZONEDC
AUCTIONEER
RECTIFIER
GEN 1
@ AC DC

PORT DC BUS
N
SSCM DC
LOADS
DC SSCM
Jf Jf =
TRJ__v
D SSIM AC
LOADS
SSCM [
7
STBD DC BUS

-

Figure 1-1 - Integrated Power System (from [Ref. 2])

from the DC busses. As shown in Figure 1-1, there are at least two DC busses, a port bus
and a starboard bus. The DC is distributed from the source(s) into the separate zones
[Ref. 2]. Each zone contains a number of Ship Service Converter Modules (SSCM) and
Inverter Modules (SSIM). Each zone has two primary SSCMs which are used to step-
down the main DC bus voltage to a regulated level for use in the zone. In this way the
SSCM not only acts as a preregulator but also acts as a buffer and implements fault
protection for each zone. Electric loads within the zone are fed by either SSCM:s or

SSIMs depending on the load’s requirement for DC or AC power.

B. RESEARCH FOCUS

The focus of this thesis is on controlling the SSCM and SSIM using the Universal
Controller. Both the SSCM and SSIM are particular examples of Power Electronic
Building Blocks (PEBBs) or devices that integrate power conversion, sensing and control
into one package. The Universal Controller, designed by the engineers at the Naval
Surface Warfare Center (NSWC) in Annapolis, Maryland, is a digital controller built to
demonstrate the Power Electronic Building Blocks (PEBB) software control capability
[Ref. 3]. The main advantage of using a digital controller in a program like PEBB is that
control algorithm configuration changes can be made in the software and do not need to
be re-engineered into the hardware. For example, to change the switching frequency of
the SSCM that uses an analog controller one must physically change various components
on the control board. To affect the same change with a digital controller, one must only

implement a change in the software.

The Universal Controller was built by the Naval Postgraduate School (NPS)
Power Research Group to be used in its research, specifically for the PEBB Network
Simulation Testbed [Ref. 4]. The testbed is currently being developed to help garner
understanding on how all of the energy conversion devices within a distribution zone
interact. The Universal controller will enable the researchers to test different control
algorithms by changing only the software and not the hardware. In this manner, different
control bandwidths can be implemented so that negative-impedance effects can be readily
investigated.

The Universal controller has no manual and therefore the focus of this thesis is on
documenting how the controller works and describing how to implement desired control
algorithms for the SSCM and the SSIM. In Chapter II the basic operation of the SSCM
and SSIM are presented and the equations governing their circuit behavior are discussed.
Next; Chapter III deals with the digital signal processing (DSP) hardware contained on
boards available at NPS and then discusses the hardware associated with the Universal
Controller. The hardware must be controlled by a software program, and in Chapter IV
the software provided by NSWC is investigated. The software provided by NSWC is
used to initialize the control board and to allow for a PC interface with the board. This
allows data to be downloaded to the controller via the keyboard on the host PC. Next the
DSP control implementation is presented in Chapter V. The final chapter contains a

summary of the research work, notable conclusions and recommendations for future

work.

II. POWER CONVERTERS

A. INTRODUCTION

The primary power electronic elements in the DC zonal distribution system are
the Ship Service Converter Modules (SSCM) and the Ship Service Inverter Modules
(SSIM). The SSCM processes the high-voltage primary DC bus power and produces
regulated power at a lower DC voltage. The SSIM takes DC power and converts it to
single-phase or three-phase AC power. The topology used for the SSCM is the DC-to-
DC buck chopper. The topology for the SSIM is the auxiliary resonant commutated pole
(ARCP) inverter. Both the buck chopper and the ARCP utilize power semiconductor
devices controlled by signal electronics to perform the power conversion. This chapter

contains a brief description of the operation and control of the buck chopper and the

ARCP.

B. DC-TO-DC CONVERTER

The buck chopper, or step-down converter, is a DC-to-DC converter in which the
output voltage is always less than the input voltage. The topology for the buck chopper is
shown in Figure (2-1). By controlling the amount of time that the switch is closed for a
given switching period, a “chopped” voltage waveform between zero and the DC input
voltage is realized across the circuit diode. The LC filter then acts to filter out the high-
frequency harmonics and ‘extract the average value. Closed-loop control is almost always

required to guarantee acceptable transient and steady-state response.

Diode

Figure 2-1, Buck chopper schematic

1. Basic Buck Chopper Operation

The majority of the material presented on the buck chopper is derived from
Mohan [Ref. 5]. The voltage output of the buck chopper depends on the duty cycle,
which is the ratio of the time the switch is “on” to the switching period, and the input

voltage. During continuous current operation, the following steady-state input/output

relationship holds.
D=-= (2-1)

V., =DE (2-2)
Assuming that C is sufficiently large, V,,, will remain constant. Figure (2-2)

illustrates typical relationships between the input voltage, duty cycle and output voltage.

Vdiode

<

ot TTT T T T T T T T P

|<— Lo ——b|<- Lon ->|<—-— T.=1/f,—>|

Figure 2-2, Buck chopper voltage waveforms

There are two modes of operation for the buck chopper, continuous and
discontinuous. For the continuous case, the inductor current does not go to zero during
the switching period, whereas in the discontinuous mode it does. Figure (2-3) shows the
inductor current for both cases. It is desirable to operate with continuous current since in
this mode the buck chopper is equivalent to a DC transformer with the turns ratio
controlled electronically via the duty cycle. The energy storage capacity of the inductor
determines the mode of operation. The value of the inductance at the boundary between
continuous and discontinuous conduction modes is called the critical inductance and is
given by Equation (2-3).

TR

erit —
2

L

(1-D) (2-3)

where R is the attached load resistance.

|1— ton —>|<- ton -P}d— T‘=1If‘——P|

)]

Figure 2-3, The inductor current for (a) continuous mode; (b) discontinuous mode

2. Specifications

A medium-power DC zonal electric distribution network simulation testbed is
being fabricated at the Naval Postgraduate School. The testbed is intended to include
converters with device ratings and specifications that will provide good representative
data sets. These data sets may then be used to assess stability boundaries, transient
response and nonlinear interaction between converters and converter controllers. The
buck chopper must meet the specifications shown in Table (2-1). The rated full load
resistance is 10 € while the minimum load before transitioning into discontinuous current

operation is 100 Q. As dictated from the specifications, the nominal duty cycle is 0.693.

Rated | Switching Input Output Input Output Mode of
Power | Frequency | Voltage Voltage | Current | Current Operation
3kW |20kHz 300V 208V 10 A 145 A Continuous

Table 2-1, Buck chopper specifications

3. Components

The components shown in Figure (2-1) make up the basic buck chopper circuit.
The switch is an Insulated Gate Bipolar Transistor (IGBT) made by International
Rectifier [Ref. 6]. The maximum voltage V; is 600 V and the maximum current I.is 90
A. The switch can be hard switched at a frequency of 25 kHz. The IGBT package
contains two freewheeling diodes. Both diodes are used, one across the IGBT to handle

reverse currents through the switch, and the other as shown in Figure (2-1). The values of

the other components are listed in Table (2-2). The L;, and C;, components form an input
filter to the basic buck structure depicted in Figure (2-1). If a rectifier is used to supply

the input DC, this filter operates to attenuate the resultant harmonics.

L C L C

2000 pF 1100 pH 2000 pF

Table 2-2, Component values

4, Interface

The IGBT requires a positive V to turn “on” and a negative Vg to turn “off”.
The driver circuit [Ref. 7] optically isolates the control signal from the IGBT by use of a
TOSHIBA TLP 250 gate drive photo IC coupler. This driver amplifies the turn-on and
turn-off voltages and protects the controller from the large voltage swings occurring

across the IGBT. Figure (2-4) illustrates a simplified gate driver for the IGBT. The

switch is on when the control signal (light) is “on”.

IGBT

— 5V

U2
r—cg ¥ ™ U H —a—Control Signal
T sV

Figure 2-4, Simplified IGBT driver circuit.

5. Control

The buck chopper must be stable, allow for fast transient response, and allow

parallel units to share power equally. The control algorithm [Ref. 7] to be implemented

is:

d(t) = Dss- (hv +h, jdt)(vo Yy~ %) —h,(i, —iy) (2-4)
where,
d(t) = time-varying duty cycle Dss = steady-state duty cycle
h, = voltage gain h, = integrator gain
v, = buck output voltage h; = current gain
v,¢ = reference voltage i, = load current

i, = inductor current
The quantity (v, - v, - 1,/10) represents the error between the actual buck output voltage
and what is desired. The i /10 term represents a voltage droop which is required for
paralleling two units. The control law uses a current gain to force the inductor current to
track changes in the output current. In addition, the proportional voltage error signal is
there for stability while the integral term guarantees zero steady-state error. The steady-
state duty cycle term represents feed-forward action that compensates for changes in the
input voltage. The controller must also be able to handle auxiliary functions such as
limiting the current, temperature sensing and buck chopper startup. Additional details

may be found in reference [7].

10

6. Motivation for DSP

The control algorithm described above must be implemented and tested.
Designing the control using software and a universal DSP controller will significantly
enhance the testing and evaluation of the DC-to-DC converter by allowing flexibility and
speed in changing control algorithms, adjusting gains, and investigating different
switching frequencies. Such modifications using the analog controller described in
reference [7] are impractical and generally involve significant efforts in unsoldering
components and inserting and tuning new ones. The PEBB technology [Ref. 3] is based

on software control capability and, in particular, configuring a single controller to control

multiple applications such as both the buck chopper and the ARCP inverter.

C. DC-TO-AC INVERTER

The switch-mode DC-to-AC inverter is a power conversion device which takes

DC power and produces an approximation to a sinusoidal AC output where both the

frequency and amplitude of the output can be controlled.

1. Basic Operation

The SSIM is a three-phase inverter. To help explain the basic operation of the
switch-mode inverter only one phase of the inverter will be discussed. Switch-mode
inverters operate by electronically controlling the “on” times of the switches. The switch

can be hard-switched, which results in high switching stresses and power loss, or soft-

switched (ARCP) which reduces the switching stresses and power loss.

11

o

+
+ sl
viz =< 5 M /
- ia
o -
vd a
+
+ s2
Va2 =X / van
) .

Figure 2-5, One phase hard-switched inverter

a) Hard-Switched 3-Phase Inverter

The simplified schematic of one phase of a hard-switched inverter
is shown in Figure (2-5). For this circuit to operate, the switches S1 and S2 open and
close in a predetermined fashion to produce the AC output. In steady state for any given
instant, only one switch will be closed at a time and either the diode or switch will be
carrying the current depending on the direction of the current flow. For example when S1
is gated and S2 is open, v,,= V. If the current flow is out, i, > 0, S1 is conducting. If the
current flow is in, i, <0, D1 is conducting. When S2 is gated and S1 is open, v,, = 0. Ifi,
>0, D2 conducts. Ifi, <0, S2 conducts. By connecting the return path of the load to
terminal o, the output v,, alternates between £V ,. The remaining two phases operate in

an analogous manner but have their gating signals displaced electrically by 120°.

12

b) Auxiliary Resonant Commutated Pole Inverter

The ARCP inverter allows for zero-switching voltages across the
IGBTs which reduces the power loss and switching stresses associated with the hard-
switched converter. The specific operation of an ARCP can be found in [Ref. 8]. Figure
(2-6) shows one phase of the ARCP. The auxiliary circuit switches A1 and A2 are
controlled by sensing the direction of the output current and the voltages across the
switches so that the resonant current, i,, will either pump current to the circuit (1,>0)
when D1 or D2 is conducting, or sink current from the circuit (i, < 0) when i, is below a
certain threshold and conducting through S1 or S2. In particular, these circuit switches
are only gated during S1 and S2 switching transitions and the high-frequency resonant

current pulse acts to supply the needed energy to achieve zero-voltage switching.

+ s1
-\ o

7 =
) Lf
R B O L :

\|
Jl

Y\ N\
—— .
1r 10
* Cde2 s2
van Cr2
T~ Al A2 A =< van

Figure 2-6, Single phase of the ARCP

2. Specifications

The ARCP was designed and assembled by the Applied Research Laboratory,

Penn State University [Ref. 9] with the following specifications listed in Table (2-3).

Operating Specifications

PWM operating frequency 0 to 50kHz

Minimum dead time 1 ps

Nominal resonant frequency 250 kHz

Maximum load rate (di/dt) 36 Alus
Input/Output Specifications

Rated dc bus voltage 400V

Maximum overvoltage 150V

Output voltage (3¢-ac)

220 V (rms,line to line)

Output current (3¢-ac) 17.7 A (rms)

Output voltage (dc) 400V

Output current (dc) 25A

Power supply voltage 24V+2V

Maximum power supply current @ 24 V 22A

Drive signal inputs fiber optic
Current Feedback

Isolation from main power bridge <10 MQ

Reference user ground

Bandwidth 200 kHz

Scaling (V/A) - This is the scaling of the sensed current value 0.1 V/A

(1V=10 A)

Limit - This is the maximum voltage allowed by the current sensor. | £2.75 V

Table 2-3, The ARCP specifications

The units were designed to contain three separate pole (phase) boards to facilitate

operation as a three-phase unit or three separate single phases. A control board was also

14

incorporated to generate the actual main and auxiliary switch gating signals given the

monitored variables and the commanded main switch signals.

3. Components

Due to the high resonant frequency (250 kHz) of the auxiliary circuit, switches A1l
and A2 on Figure (2-6) were chosen to be APT4520 MOSFETs. These devices have a
voltage rating of 450 V and an on-state resistance of 0.20Q. The pulse-by-pulse peak
current that maybe conducted through the mosFETs is 92 A for a maximum period of 10
ps. Utilization of these devices allowed resonant cycles with a frequency as high as 325
kHz.

The main switches S1 and S2 were chosen to be IRGPC50U IGBTs. These
devices allow peak current carrying capabilities of 50 A at a switching frequency of 10
kHz. Since the unit is designed to accommodate switching frequencies up to 50 kHz,
correct ARCP operation (soft switching) is essential above 10kHz.

The ARCP requires two sets of diodes, one set for the main switches and the other
set for the auxiliary circuit. The diodes chosen for the main switches are HEXFRED
HFA30PA60C diodes, which offered revasonable conduction losses and short recovery
times. The auxiliary diodes primary requirement is speed of recovery to prevent
circulating currents among the switches. The devices chosen were the MUR3040, which

allow a 50 ns reverse recovery time.

15

o

The passive component values are as follows: L, ~ 2.8 pH, Cy/2 ~ 10 pF, and
C/2 =~ .05 puF. The inductance L; listed in Figure (2-6) is a part of the attached load and is

required to satisfy the di/dt specifications of the converter.

4, Interface

The ARCP inverter requires the control of four switches for each phase of the
inverter. The auxiliary switches are controlled internally by the SSIM unit while the
gating signals for the main switches are specified by an external controller. Figure (2-7)
shows the circuit block diagram for a single phase of the ARCP. The complete ARCP
contains three separate phase boards each with an identical block diagram. From this
diagram, it is clear that each phase is composed of the following sub-circuits: two main
drive and voltage sense circuits, two inner controller and auxiliary switch drive circuits,

and an outer controller [Ref. 9].

L
* Top Gate

Current Out
1 Sink Upper Gate i — urrent Ou
H Drive Drive and T _l n
L Circuit Voltage } = — Detection —
External froared Detection T ircuitry
TOP il v oen [—
Swilch out
Control uter
Interface
|
Circuitry Gonballer P
Block
External
Bottom 4 O
Swich = == === | =
Control Pump Lower Gate) ;L -
Drive Drive and
Cireuit Voitage

| | | I Bottom Gate

Figure 2-7, Circuit block diagram of the ARCP [Ref. 9]

16

The main drive circuitry takes the external control signal (light) for the main
switches and converts the signal into the proper turn-on or turn-off gate voltages. This
circuit also detects the voltage across the switch which then can be monitored by the user.

The inner controller, labeled pump drive circuit and sink drive circuit on Figure
(2-7), controls the auxiliary switches. The pump drive circuit turns “on” the bottom
auxiliary switch so that current is added to the system, whereas the sink drive circuit turns
“on” the top auxiliary switch so that it acts as a current sink.

The outer controller block controls the timing of the resonant switches. This is
accomplished by determining the direction and magnitude of the output current, via the
current detection circuitry, and the voltage across the main switches. The outer controller
also feeds the user control signals to the main switch drivers.

The current detection circuitry and power supply block are not physically located
on the phase board but the signals generated by these circuits and the user control are

connected to the outer controller via the interface circuitry block.

5. Control

In order to produce a sinusoidal output with the amplitude and frequency
controllable, a more complex switching method then the buck chopper is used. The
method is called sine-triangle pulse width modulation (PWM) [Ref. 5]. Figure (2-7)
shows a triangular waveform superimposed on a sinusoidal waveform. The triangular
waveform is at switching frequency (f,) which establishes the frequency that the inverter

switches are gated. The sinusoidal waveform is the control signal (v,,,,,,) and is used to

17

modulate the switch duty ratio and its frequency (f}) is the desired fundamental frequency
of the inverter output. The switches in the ARCP inverter of Figure (2-6) are controlled
based on the comparison of v,y and v;. When v, > v,; S1 is “on” and v,, = V/2;

when Veye < v; S2 is “on” and v,, =-V /2. The amplitude is controlled by the following

ratio:
ma = cifmtrol (2_5)

While in the linear range of control, the peak amplitude of the fundamental frequency

component is

A

Uy =m, = 2-6)

Closed-loop control of an inverter generally seeks to regulate either the three-
phase voltages or the three-phase currents out of the inverter. This is accomplished by
externally generating reference signals and comparing these with the actual measured
quantities. The resultant error signals are then used to adjust the modulating waveform

depicted in Figure (2-8). Several closed-loop inverter control schemes were investigated

and reported on in [Ref. 10].

6. Motivation for DSP

The ARCP must be tested with different load configurations and control laws.
The use of a DSP controller will allow flexibility in that the control can be modified in
software saving time and resources. The noise inherent in an analog controller is

eliminated and this allows for a much cleaner output from the ARCP.

18

V,
?ntr | Vri

@)
V,o fundamental

V
MO T IA
TTROATT

(b)

T %

<
B

14_

Figure 2-8, PWM (a) the sine-triangle and (b) output waveforms.
It is clear that DSP control is a desired feature for implementing the control of the buck
chopper and the ARCP inverter. Personnel at the Naval Surface Warfare Center,
Annapolis have developed a control board for the PEBB program called the PEBB
Universal Controller. The Universal Controller is currently in the development stage.
This thesis will concentrate on using the Universal Controller hardware to implement the
control for the buck choppers and the ARCP inverters within the NPS testbed. The

Universal Controller’s hardware is examined in the next chapter.

19

20

III. DSP HARDWARE

A, INTRODUCTION

As discussed in the last chapter, DSP control of the ship service inverter module
(SSIM) and the ship service converter module (SSCM) offers flexibility in the design and
implementation of various control algorithms. Software control of power electronic
converters is certainly not a novel idea. Various successful attempts at controlling
devices have been undertaken at NPS [Ref. 10 and 11], but identifying the most
appropriate DSP hardware configuration for this type of control has been a problem. One
of the unique requirements for controlling either the ARCP inverter or the buck chopper
is that the algorithms for each require many signals to be monitored and processed. The
major limitation of the commercial boards that have been used in past efforts is the lack
of signal inputs available for processing. This problem has motivated engineers at the
Naval Surface Warfare Center (NSWC), Annapolis, MD, to design a unique DSP product
called the PEBB Universal Controller. The purpose of this research is to implement and
validate control algorithms using the NSWC Universal Controller. In this chapter, a
general hardware descfiption of this controller and a brief overview of three commercial

DSP boards are presented. Aspects of the software control of the Universal Controller are

then described in the next chapter.

B. COMMERCIAL DSP BOARDS

The heart of any DSP board is the processor. DSP processors can be divided into
two broad categories: general purpose and special purpose [Ref. 12]. Special purpose
processors execute specific algorithms such as digital filters, FFTs, and cosine transforms
for use in image processing. General purpose microprocessors are basically high-speed
microprocessors with hardware architectures and instruction sets tailored for real-time
DSP operations. DSP processors make use of the Harvard architecture which employs a
separate bus for addresses and data, and different memory locations for data and
instructions. This allows for full overlap of instruction fetch and execution. For example,
since the program instructions and data lie in separate memory locations, the fetching of
the next instruction can overlap the execution of the current instruction. Texas
Instruments produces the TMS320 family of general purpose DSP chips. The TMS320
processors use a modified Harvard architecture. In the modified architecture, separate
program and data memory spaces are still maintained, but communication between the
two memory spaces is permissible. All of the DSP boards that have been encountered in
this research effort and are available at NPS contain the TMS320C30/31 DSP processor.
These include:

e (30 system board by LSI (SPECTRUM Signal Processing Inc.)

e SBC31 system board by Innovative Integrations Digital Signal Processor

e LD31 system board by dSPACE (digital signal processing and control

engineering).

22

The C30 board features the Texas Instruments TM320C30 general purpose DSP
processor. This board contains two banks of off chip memory for a total of 128K words.
The on board memory allows for quick access to data. Dual channel 16 bit A/D and D/A
converters are included on the board with sampling rates of up to 200 kHz. The board is
suitable only for PC/AT and compatibles, since it uses the full 16-bit interface. All
communication with the board is via the I/O space of the PC. Access to memory passes
are through the dual porting hardware on the board. Reference [13] has the complete
details for this board.

The SBC31 board is based on the Texas Instruments TM320C31. The SBC31 isa
stand alone card with 128K of on-board Programmable Read Only Memory (PROM) and
32K of Static Random Access Memory (SRAM) for user programs. The PROM contains
the program instructions and the SRAM is for data storage and retrieval. The board
includes one dual channel 16-bit, 200 kHz A/D converter and 2 dual channel D/A
converters. The board contains two serial ports. A remote PC can be connected via the
RS232 connector to communicate with the board. This board was used for implementing
a digital control algorithm for a DC-to-DC buck chopper previously, but had some
serious limitations [Ref. 11]. The most significant limitation was the delay times
associated with the A/D converters. The large delay time occurred because of two
reasons:

1. One A/D converter was used to sample 4 signals .
2. The A/D converter is double buffered; therefore, two conversion cycles are

required before the sampled data is available for computations.

23

The third DSP board available at NPS is the digital Signal Processing And Control
Engineering (dSPACE) DS1102 controller board. This board can be inserted into any 16-
bit slot on a PC/AT computer. The DS1102 is based on the Texas Instrument
TMS320C31. This board contains two 16-bit A/D converters and two 12-bit A/D
converters [Ref. 14]. One of the benefits of the DS1102 is that it comes with software
that allows the user to interface with the MathWorks development software MATLAB
and SIMULINK. This facilitates the design and implementation of a controller using the
graphical modeling capabilities of SIMULINK. C code can then be generated from the
SIMULINK design and compiled by the TMS C compiler. This makes the dSPACE
board very easy to work with. The board does have significant limitations. As
documented in Reference [10], the DS1102 was limited to single-phase operation of the
ARCP inverter because of the limited number of I/O ports. In addition, there are

conservative bounds on the complexity of the algorithm that maybe loaded form

SIMULINK into the board.
As mentioned at the beginning of the chapter NSWC, in conjunction with the PEBB
program, developed their own DSP controller. This controller was designed primarily for

power electronic circuits, and, specifically, for the intensive input/output requirements of

the ARCP.

C. NSWC PEBB UNIVERSAL CONTROLLER

The PEBB Universal Controller was designed to control various applications as

shown in Figure (3-1). Presently the application which requires the most I/O support is

24

the ARCP, which requires as many as 12 gate signals and the ability to convert 10 analog

signals to digital signals. Each phase of the ARCP inverter has 4 gates to be controlled:

Feedback for Software
Automation

.
, Load
—_—— Filter DC Filter e

\
/ / \
// // \\
/ / \ N
/ / / P EBB \\ \
/ / . \\
/ VT \ 7 A} 7 A
/ A \ \ \ A N N\
Bus . |Adjustable
Circuit Actuato Motor Power Inverters
STm}fg Breakers s Controllers Ié)nnevedes Supplies Converters|

Programmable for Multiple Applications

Figure 3-1, PEBB package diagram [Ref. 4]
two main switches and two auxiliary switches (see Chapter II). The units delivered to
NPS have a provision wherein the auxiliary switches may be controlled by the unit itself.
In general, however, control of all 12 switches requires sampling the output voltage and
current of each phase and the input voltage and current. By designing the DSP board to

handle the most I/O intensive application, switching to other applications only involves

changing the software and not the hardware.

25

1. General Description
The Universal Controller is built around the TMS320C30 DSP chip and is
contained on two boards, the mother board (CPU board) and the daughter board (I/0

board). Figure (3-2) shows the CPU board and I/0 board external connections.

CPU BOARD

OPTICAL RS232{0..1]

<> <&~> OPTICAL RS232 [0..1)

XD {0..12)
X LDB

0..31
0.31] o.14 019
1/0 BOARD
XA
XD [0.12] LDB
{0..31} X [0..15)
10.14]
INPUTS {071 s @ INPUTS [0..7] GATE . GATE
[0..11] @“ ——— {0.11]
WSE’N;ORS - (D> IV SENSORS [0.3]
.. LEDS LEDS
IV SENSORS WV SENSORS [0.7) % —__ 0..7]
O ey [0.7)
14..10] / [4..10)

Figure 3-2, Universal controller CPU and I/0 boards [Ref. 15]
Communication with the CPU board is accomplished via the RS232 serial port on a host
PC. The signal from the host PC is converted to an optical signal and read by the CPU
board. The board also can send information to the PC such as voltage and current values
for display on the screen. The I/0 board contains all the voltage and current sensor inputs
and also sends the gate signals to the switches. In Figure (3-2), XD and XA correspond to
the 32-bit TMS320 expansion data bus and the expansion address bus respectively. The
LDB is a 16-bit data bus from the mirocontroller contained on the CPU board. The L

signifies that the microcontroller is connected to the left side of the dual port memory

26

which is discussed below. The I/O board shows the 10 current/voltage sensors (on the
left of the diagram) which are connected to the A/D converters and 12 gate connections
(on the right of the diagram) which are the optical transmitters used to drive the switching
circuits. The LED connection is used to display the current mode of operation (e.g.
ARCP control or buck control). The inputs [0..7] (on the left of the diagram) can be used

to start and stop the controller locally. The input and LED connections are not used in

this research effort.

2. Primary Components

The primary components of the Universal Controller can be divided up into the
following five categories: processor, memory, PC interface, analog interface, and
timer/counters. A brief description of each of these components follows. A complete

listing of all the parts contained in the Universal Controller is given in Appendix A.

a) Processor

The processor is the 181-pin grid array TMS320C30 from Texas
Instruments [Ref. 16]. The C30 is operating from a 40 MHz clock which results in a 50
ns instruction cycle time and the performance of 20 million instructions per second. The
peak arithmetic performance is 40 million floating-point computations per second when
the floating-point multiplier and adder are used in parallel. The C30 contains one 4K x
32-bit, single-cycle, dual-access, on-chip ROM block and two 1K x 32-bit RAM blocks.

The C30 can be set up in two different modes, microprocessor mode or microcomputer

27

mode. The memory map (see Figure 3-3) depends on which mode the processor is

running in. The default mode for the Universal Controller is the microprocessor mode.

oh
vecs > Interrupts
03th
40h
PROM (40h to 2000h): .data and text
SRAM (80000h to 100000h): sram External
DUAL_PORT (100000h to 180000h): dualport
7FFFFFh
800000h
memory expansion bus
{not used)
801FFFh
802000h
RESERVED
803FFFh
804000h
XBUS(804000h TO BOSFFFh): xbus
ct_swireg: 804000h ct_port: 804100h
ct_phasea: 804200h ct_phaseb: 804300h
ct_phasec: 804400h d_output: 804500h s
dac_1: 804700h dac_2: 804800h Expansion
inputcs: 804900h acs: 804a00h Bus
bcs: 804B0Oh ccs: B0O4COOh
805FFFh
806000h
RESERVED
807FFFh
808000h .
ctrl: 808000h - Pointer for this memory location P erlpheral-Bus
808060 - Expansion Bus Control Memory-Maped
808064 - Primary Bus Control f
8097FFh Registers
809800h
RAM1(809800h to 809BFFh): ram1 RAM Biock 0
809BFFh
809C00N
RAM2(809C00h to 80SFFFh): ram2 RAM Block 1
809FFFh
80A00Ch
Extemnal
{not used)
FFFFFFh

Figure 3-3, Memory map for microprocessor mode.

28

The details of the memory map will be discussed in Chapter IV. Other key features of the

microprocessor are:

64 x 32 instruction cache

32-bit instruction and data words

24-bit addresses

40-/32-bit floating-point/integer multiplier and ALU

Eight extended-precision registers (accumulators)

Two address generators with eight auxiliary registers and two auxiliary
register arithmetic units

On-chip DMA controller for concurrent I/O and CPU operation
Parallel ALU and multiplier instructions in a single cycle

Two 32-bit data buses (24- and 13-bit address)

Two 32-bit timers

Two general-purpose external flags; four external interrupts.

Figure (3-4) shows a functional block diagram to illustrate the interrelationships between

the various C30 key components. Figure (3-4) does not show the port control registers.

The port control registers consist of two 32-bit registers, one for the primary-bus control

and the other for the expansion-bus control. The primary bus control is set up to allow

for 1 wait state and 1M bank compare to allow for reading from the PROM and static

random access memory (SRAM). The expansion bus is set up to allow for 2 wait states

which are required for reading the values from the slower A/D converters and writing

control words and count values to the counter/timers.

29

Fogram FAM Block FAR Block 1 ROM Block 0
iy I % 52) 1K x 3y (4K x 32y

0 0000000
o 0 _ G 0

CPRY
WESE] — pr— pr—
. Iy Fiieceed Addrnss Ganarabors
[Fioating-Point | Fleating:Paint
;‘!\iﬁ — FAalipties ALL Corriral Regiihars
XF10 4—»n o 8 ExlendedPrecision
Mol ATy = Fegisters
Xi g §
B : Address Adciress
W‘C&"‘” e Gemfalon 0 | Gafestalor 1
on ———»
ng E— B Auxiliary Begiztars
B 12 Coniral Registars
E:] Ayadable on
TMSE20C0, _
TMSaR0030-27. and
TIAS320G30-4D

Figure 3-4, The TMS320C3x block diagram [Ref. 16].

b) Memory

The external memory is divided into three memory areas. Figure
(3-4) shows the block diagram of the CPU board and the locations for the three memory
areas. The first area is the programmable read only memory (PROM). This is where the
program code, which is discussed in the next chapter, is located. Four WSI WS57C256F-
35 32K x 8 power switched and reprogrammable PROM chips were selected. The
TMS320C30’s 32-bit primary bus is divided up between the fc;ur PROMs, which have 8-
bit word memory. An address decoder is used so that a memory read will read the same
memory location on all four PROMs simultaneously to generate the 32-bit word for the

microprocessor. The CPU board has 28-pin sockets to allow the PROM to be removed

30

for programming. The PROM is memory mapped to 40h. This means that the address for
the top memory location of the PROM is located at 40 hex.

The next memory area is the static RAM. The static RAM is made up of four
IDT71256SA fast 32K x 8 CMOS chips. A memory read or write works just like a
memory read for the PROM. The static RAM is memory mapped to 80000h. Figure (3-

5) shows the location of the static RAM on the CPU board.

microcontroller dual port memory
PROM PROM PROM PROM
TMS320C30
SRAM SRAM SRAM SRAM

Figure 3-5, The Universal Controller CPU board showing key components

The last memory area is the dual-port memory. The IDT7130SA high-speed 1K x
8 dual-port static RAM from Integrated Device Technology was selected for use on the
Universal Controller, The dual-port memory allows the DSP chip to access data that may
be downloaded to the dual-port memory from the host PC. The dual-port memory is
memory mapped to 100000h. Figure (3-5) shows the location of the dual-port memory

on the CPU board.

31

c) PC Interface

The PC communicates with the universal controller board by a
windows C++ program that sends data and commands through one of the communication
ports to the Universal Controller. The Universal Controller contains two optical
receivers. One to receive data from the host PC, and the other to receive data from
another Universal Controller. Since the Universal controller must receive an optical
signal, the signal from the PC must be converted to an optical signal as shown in Figure
(3-6). The RS-232 port from the host computer is connected to a optical
transmitter/receiver box. Pins 2, 3, 4, and 7 of the RS-232 are used and correspond to:

transmitting data, receiving data, requesting to send data, and signal ground respectively.

Fiberoptic cabling
optical universal
transmitter controller

Figure 3-6, PC interface.

The optical transmitter/receiver box uses a MAX232CPE +5V RS-232 transceiver to
drive the optical transmitter and receiver ports. The data is sent to the microcontroller on
the CPU board, Figure (3-5). The microcontroller is Intel’s 87C51FA. The
microcontroller can write to the dual-port memory, interrupt the DSP processor, and send

commands to the DSP processor. It is operating from a 16 MHz clock. The 8751 must

32

be programmed in conjunction with the C++ windows program for the interface to work.
An engineer at NSWC, Annapolis has written both the C++ PC code and the 8751
assembly code to allow for limited interaction with the Universal Controller. Currently
the PC can download 20 parameters to the dual port memory and send commands to start

and stop the controller.

d) Analog Interface

The input/output board contains 11 Maxim 500ksps 12-bit A/D
converters. The sensed voltages and currents are connected to the I/0 board via twisted
pair. The input range is + 5 volts and the conversion time is 2.6 ps. The I/O board has
one 20 MHz clock and a Motorola SN74L.S93 4-bit binary counter that is used to convert
the 20 MHz clock into a 5 MHz clock for the A/D converters. The conversion takes 13
clock cycles and one clock cycle takes 1/5MHz = 0.2 us; therefore, total conversion time
is 13(0.2 ps) = 2.6 ps. The A/D converters are set up in the ROM mode. This means that
the converter acts like a fast-access memory location. There are 10 input connections and
11 A/D converters. The 11" A/D converter is used to convert a selected analog input
signal to a digital signal for purposes of displaying on an LCD screen. There are 5
memory locations for the 10 A/D converters. A read to one memory location will initiate
a conversion on two A/D converters and will also read the data from the previous
conversion. The time between successive read operations must be greater than the sum
of the conversion time (2.6 ps) and the track/hold acquisition time (.35 ps) [Ref.17].

Figure (3-7) shows the I/O board and the 11 A/D converters.

33

12 optical transmitters ~——p [o on' or |

F_

0IT|OIT OITl IOIT OITIOIT Oﬂ'l

S — ‘—, Ly

{ ADC [PLD Id--b| PLD | -)l PLD |
ADC | A A A

[|
| ADC v v A 4
ADC W [CIT 4 ! | crT3 | | CrT2 t

| ADC 1
—| ADC |
| ADC l Cm1
r—i ADC !

<4— 10 analog inputs

J

L_[_l

1

——

e

[ADC

Figure 3-7, The Universal Controller I/O board showing key components

e) Timer/Counters

There are four Harris 82C54 counter timers on the I/0 board as
shown in Figure (3-6). The 20 MHz clock mentioned above is converted to a 10 MHz
master clock signal via the SN74L893 4-bit binary counter. This master clock signal is
used by all 4 counter timers and the 3 programmable logic devices (PLD). As mentioned
earlier, the Universal Controller was designed for operating the ARCP inverter which
requires 12 gate signals (when controlling both the main and auxiliary switches). Figure
(3-7) illustrates that there are 3 sets of 4 optical transmitters (phase a, phase b, and phase
c) and that each set is controlled by 1 PLD and each PLD has a separate counter/timer and
a common counter/timer connected to it. The PLD is programmed to operate the 2 main
switches and the 2 auxiliary switches on a single phase of the ARCP inverter. The

counter timers can be controlled by software and will be discussed in the next chapter.

34

Each counter timer has 3 counters, a control word register, and a data input
register. For the ARCP inverter, C/T 1 is set up in rate generator mode. This mode
establishes the switching frequency. The master clock is a 10 MHz clock which
corresponds to T, = 100 ns. For a 10 kHz switching frequency, the switching period is
T, = VA, = 100 ps. The 100 ps is timed by counting 1000 counts (1000 x 100 ns = 100
us) on one of the counters in C/T 1. The other 2 counters in C/T 1 are set up to count to
1000 also, but they are delayed so that each counter in C/T 1 generates a pulse every 100
us and each pulse is separated by 1/3 of the switching period, or 120°. C/T 1 is
designated the switching frequency counter and each counter output is used by a PLD,
one for each phase, separated by 120°. The PLDs will generate an external interrupt on
the C30 DSP processor by each pulse generated by C/T 1, allowing data reads from the
A/D converters and control calculations to be performed by the processor. The other 3
counter timers are set up to operate in hardware retriggerable one-shot mode. In this
mode the PLD will trigger a counter and the output of the counter will go low for a
predetermined count (whatever count is written to the counter) and then go high until
triggered again. Each PLD and C/T combination along with the counts associated in each
counter will drive the optical transmitters and control up to 12 gates. The detailed

schematic of the PLD is contained in Appendix B.

3. Architecture Overview

As stated earlier, the Universal Controller is contained on two boards, a CPU

board and an I/O board. The boards are connected by a 96-pin snap-on connector. Figure

35

(3-8) shows the block diagram and how the two boards are connected. The Universal

Controller is powered by a Condor DC power supply model HDCC-150W-A+. The

power supply is rated at 5V, 12A and £12V, 3.4A. The 5V is connected to the CPU

board and powers all the digital electronics on both boards. The +12V is connected to the

1/0 board and powers the input signal buffers and A/D converters. A complete set of

schematics is located in Appendix B.

& &

& &

Gate Drivers

& &

/
bod

10 Analog Signals

/0 Board

: CPU Board
|
|
| Optical

P 32K X 32
: RS232 % | < EPROM
I
: 87C51 R DL};I)l(Dg ¢ | TMms320c30

- L - »
| Controller Memory DSP
|
! L] 32kx32
: P sram
1
|
: DIP sSwW
|
|
L e o A 4 A
96-Pin
Snap-on Connector

T T Tt T T T T T T T ? ; Microcontroller Bus _ — — — — — ~
| DSP Bus
|
| AD A 4
[b vy v v A 4 I Local Display
| e C/T Duty C/T Duty C/T Duty
] Switching AD AD 8 -1 MUX
| Freqency Cycle Cycle Cycle
| |
| A A
|
|
| PLD PLD PLD
| Phase A Phase B Phase C
|
I
!
|
|
|

Figure 3-8, Block diagram of the Universal Controller [Ref. 15].

The hardware elements in Figure (3-8) work together to provide the control of the

SSIM and the SSCM. For example, to control the SSCM, the first requirement is to burn

36

the control code into the EPROM. The code will need parameters such as switching

frequency, reference voltage, and gain constants. These parameters are downloaded to
the dual port memory from the host PC via the 8751 microcontroller. The 8751
controller will start and stop the controller by commands issued from the host PC. Once
the host PC starts the controller, the DSP processor will initialize the board to run the
SSCM program. Initialization consists of loading the control parameters from the slower
dual port memory to the faster on-chip RAM and initializing the counter/timers according
to the control parameters. Only one gate driver, one duty cycle C/T, four A/D converters
and the switching frequency C/T are needed to control the SSCM; therefore, one
Universal Controller can control two SSCMs. The input voltage, inductor current, output
current and output voltage are sampled and converted to digital signals. The signals are
used to calculate the proper duty cycle which in turn corresponds to an integer count
value that must be written to the duty cycle C/T. This will produce the gate driver signal
to be optically transmitted to the SSCM. The SRAM is not needed for the SSCM code
but is required for sine triangle pulse-width modulation control for the SSIM A large
lookup table is generated and stored in this memory location.

The TMS320C30 must be programmed to implement the specific control

algorithms. The software implementation is discussed in the next chapter.

37

IV. DSP SOFTWARE AND FIRMWARE

A. INTRODUCTION

As discussed in Chapter III, the Universal Controller consists of many hardware
components that must be programmed in order to operate. The host PC must contain
software that allows it to communicate with the DSP processor, and the DSP processor
must be able to communicate with all of the input/output components as well as the
counter/timers. In this chapter the software and firmware requirements of the Universal
Controller are introduced and discussed. The term software is defined within this
document as being computer program instructions, and the term firmware is defined as
the combination of a hardware device, such as the 87C51, and the computer instructions
or computer data that reside as read-only software on the hardware device. The software
and firmware that is required to operate the Universal Controller can be broken up into
two categories: interface software and firmware and TMS320C30 firmware.

The interface programming consists of firmware and software that allow
components to communicate with each other. For example, the 87C51 microcontroller
must be programmed to accept parameter data from the host PC and store this data in an
exact memory location within the dual port memory. This interface software and
firmware is provided by NSWC.

The TMS320C30 must be programmed to do the mathematical computations

required by the control algorithm. This code is assembled and is loaded into the EPROM.

39
Preceding Page Blank

It is the TMS320C30 code that contains the control algorithms developed here at NPS for

controlling the SSIM and the SSCM.

B. NSWC PROVIDED SOFTWARE AND FIRMWARE

The interface hardware that is programmed by NSWC includes the 87C51
microcontroller, the programmable logic devices (PLDs), and one address decoder. The
host PC must also be programmed to communicate with the Universal Controller. Since
the user enters parameters and starts and stops the controller with the host PC, the

primary emphasis of this section will be on the host PC software. A brief overview will

then follow covering the remaining firmware.

1. Host PC Software

The host PC software is a visual C++ program written in Microsoft Windows
Visual C++ version 1.5 for Windows 3.1. The program was written specifically to
demonstrate the capability of the Universal Controller by controlling a specific NSWC
power electronic device depending on the mode selected by the software. Since the main
function of the host PC is to pass parameters to the dual port memory and start and stop
the controller, the software did not need modification here at NPS. The software, as
written, will suffice to pass the parameters needed for both ARCP inverter operation and
buck chopper operation. Also depending on the mode you select, the host PC will signal
the controller to initiate or stop the desired control algorithm. This software is installed
on the research computer in the power lab. Installation instructions are included in

Appendix C.

40

To operate the software you must open the main window. The main window will
be displayed by double clicking the left button on the PEBB icon located in the PEBB
working group window. The program itself is Pebb.exe and is located in the
C:\Pebb\win3 Inew directory. As illustrated in Figure (4-1), the PC can control two
Universal Controllers, unit 1 and unit 2. Each unit has its own “ON” and “OFF” buttons
and an “ON/OFF” display indicating the current status of the unit. Before either unit can
be activated, a data link must be established. The data transfer between the PC and the

controller is done through one of the PC’s communication ports.

PEBB - DEMO
File Com Port Mode Settings

NSWC/CD - PEBB 1 DEMO

UNIT 1 UNIT 2
DC to DC Buck Mode Test Mode
OFF OFF
ON OFF ON OFF

RS232 Communications Status
COM2 Port Enabled

Figure 4-1, The main window for the host PC software
The Universal Controller is connected to the research computer via COM2. To

tell the host PC which COM port each unit is connected to, the Com Port menu item must

41

be selected as shown in Figure (4-2). The demo software allows two units to be
connected to one COM Port at one time. One PC can operate more than two controllers if
additional COM Ports are available. Each Universal Controller has a 5-pin dip switch on
the CPU board. Setting the first switch to “on” and the other four switches to “off”
corresponds to unit 1. Setting up unit 1 to run the DC-to-DC buck (SSCM) is illustrated
in Figure (4-2). The COM port must be selected first followed by the mode selection.
The last menu selection is the Settings menu. By clicking on the UNIT 1 selection under
Settings, a separate window is opened. This window is shown in Figure (4-3). From here
the user can enter up to 20 parameters. It should be noted that the names associated with
the parameters in the settings window are fixed and are associated with the parameters
needed for the operation of the NSWC ARCP. As a consequence, in order to use the

same interface software while controlling the NPS SSCMs, the variable names listed in

COM PORT MODE ’ Settings
~{ com1 UNIT1. | Test Mode UNIT 1
COM2 UNIT 2 DC to AC UNIT 2
com3 Motor Control
CcOomM4 Actuator Control
Linear Actuator Control
DC to DC Boost
DC to DC Buck

Figure 4-2, Host PC software menu settings for SSCM operation.
Figure (4-3) will necessarily need to be used to represent SSCM parameters. Therefore,
this window is merely a channel to pass parameters to the Universal Controller that need
to be changed on the fly. For example, to test the response to of the SSCM for different

control gains, KC, KCB, and BT are used to pass these parameters to the CPU board

42

instead of reprogramming the PROMSs. More details on the parameters entered for the

SSCM will be given in Chapter V.

l The parameters are passed to the dual port memory by clicking on the “OK”
button in the settings window. Only after the parameters have been passed to the CPU
may the controller be turned on. The red LED light on the CPU board will illuminate to

indicate that the CPU received the “turn on” command by the host PC.

| UNIT 1 |
‘AC RMS VOLTAGE W { 120 | |ACTR!P CURRENT j ‘ 300 |
|Ac RMS CURRENT | ‘ 10 | IDCTRIP CURRENT j | 200 l
ch VOLTAGE ' | 300 1 [BOOSTTIME] | 20 |
|Dc CURRENT i l 10] |BOOSTDELAYTIME | | 80 |
IOUTPUTFREQUENCY | [60 —l lDEADTIME ‘ l 160 |
ISWITCHING FREQUENCY | l 10000 I lBLOCKSIZE §| I 2000 l
[ACSENSOR | | 500] IDC SENSOR 1 l 500 |
ISTEP ‘ [10 | |DELAY | | 50]
'KC | L 10 | |BT | | 2000]
lKCB l | 10 | lBI | | 2000 |
| oK] | canceL |

Figure 4-3, Unit 1 settings window.
Other modes listed in Figure (4-2) are modes that correspond to the NSWC
TMS320C30 firmware. With the NSWC PROM s installed, selecting the test mode will

operate the ARCP inverter open loop. The DC to AC mode is specifically designed to

43

operate the NSWC ARCP inverter closed loop. The motor control, actuator control,
linear actuator control, and DC to DC boost modes are modes to operate specific NSWC

devices for PEBB demonstrations.

2. Microcontroller Firmware

The microcontroller must be programmed in order to operate the Universal
Controller. The 87C51 has 4K bytes of on-chip PROM to store the program. This means
that rather than using an external PROM chip, the program can be burned directly into the
87C51. The instruction set, assembly language and the use of the 8051 assembler
(ASMS51) are described in reference [18].

The purpose of the microcontroller is to interface between the host PC and the
TMS320C30 DSP microprocessor as described in Chapter III. This is accomplished in
the following way. First the 87C51 checks to see what address is selected on the 5-pin
dip switch. For example, if the switch was configured to correspond to unit 1 (as
explained above), data sent to the controller from the host PC for unit 2 would be ignored
by the CPU board with a unit 1 address. If data being sent from the host PC is for unit 1,
the microcontroller will accept the data and process it. The microcontroller will store the
parameters from the unit settings window in the dual port memory to be read by the DSP
microprocessor later. The 87C51 will also interrupt the DSP processor. The interrupts
pass commands to the DSP microprocessor to either start or stop the execution of the

desired control algorithm.

44

3. Programmable Logic Device

There are three PLDs on the 1/0 board. These devices contain the logic to operate
the gate drivers connected to the optical transmitters. Each PLD controls four optical
transmitters, one for each gate on a single phase of the ARCP. The NPS ARCP does not
require all four optical transmitters since it has its own auxiliary circuit controller;
therefore, only two of the four optical transmitters per phase are used to control the main
switches. The PLD logic produces gate signals as illustrated in Figure (4-4) with a 1.2 us
delay time between them. This delay time is referred to as “dead time” and is required by
the outer controller block of the ARCP as discussed in Chapter II. This dead time

prevents both upper and lower switches from being “on” at the same time.

upper switch

lower
switch

oo . —Pp 44— deadtime
switching period

dl
-

\ 4

Figure 4-4, The signal produced by the PLD logic.

45

All three PLDs have the same logic burned in them. As shown in Figure (3-7), each PLD
has its own counter/timer connected to it and one shared counter/timer connected to it.
The shared counter timer is called the switching frequency timer (this will be explained
later). Each PLD generates a switching period using the shared counter/timer and a duty
cycle using the dedicated counter/timer. For example, if the desired switching frequency
is 20 kHz the switching frequency timer must have an integer value of 500 in its counter
register. This is because each count takes 100 ns and 500 x 100 ns = 50 ps which is the
desired switching period for 20 kHz. The duty cycle is determined by the count that is
stored in the second counter register (each counter/timer has 3 counters) on the dedicated
counter/timer. If this count is 250, a 50% duty cycle will be produced. More details will

be documented in Chapter V.

4. Address Decoders

In addition to the PLDs required for controlling the optical transmitters, a fourth
PLD is needed for address decoding. The EPM5016 is used for reading memory from the
four EPROM chips and four SRAM chips. The TMS320C30 has a 32-bit data bus and
the EPROM and SRAM contain 8-bit memory locations. The EPM5016 is programmed
so that one read by the microprocessor will produce a 32-bit word from either the four

SRAMs or the four PROMs.

C. TMS320C30 FIRMWARE

The TMS320 family of DSPs are supported by a complete set of software

development tools, including an optimizing C compiler, an assembler, a linker, an

46

archiver, and a software simulator. Figure (4-5) illustrates the software development
flow for the TMS320C30. The highlighted area shows the development path negotiated

for this thesis.

Macro
Source Files

|
|
|
|
|
|
C Compiler I- | Assembler (€ Archiver
[’
|
l
l
i
i

A 4
\ 4

Archiver

PRI l 5
’ N\

oms30lb o Ut N
J— Linker
{ other object

libraries

|

|

|

|

|

| Macro
: Libraries
|

|

1

|

1

|

|

|

"

|

xecutable Object |

COFF Format |

Object File Converter |}

o i

Lni : N }

:; N\ A 4 I

, |
i] EPROM

:, Simulator | TMS320C30 ¢ programmer :

I

Figure 4-5, TMS320C30 software development flow [Ref. 16].
The tools shown in Figure (4-5) perform key functions in the software
development flow. A brief description of each tool is given below. Detailed information

is found in References [19, 20, and 21].

47

The C compiler accepts ANSI standard C source code and produces
TMS320C30 assembly language source code. The compiler includes an
interlist utility which interlists the C source statements with the assembly
language output.

The assembler translates the assembly language source files into machine
language Common Object File Format (COFF).

The archiver combines a collection of files into a single file called a library.
The archiver can also be used to modify the existing library by adding,
replacing, extracting, or deleting members. The object library rts30.1ib is
included with the C compiler. It contains standard runtime-support functions,
compiler utility functions, and math functions that can be called from C
programs.

The linker accepts COFF object files and object libraries as input and
combines them into a single executable object module.

The object format converter converts the COFF object file into either TI-
tagged, Intel hex, Intel word, or Tektronix object format. The converted file is
then downloaded to an EPROM programmer.

The simulator is a software program designed to simulate the executable
COFF object file produced by the linker. The simulator allows for on-screen

editing and shows continuous updates as you step through the code. The

simulator also features multiple windows to view the assembly code, CPU

48

registers and multiple memory locations. A complete user’s guide is located
in the NPS power lab [Ref. 21].

As shown in the highlighted portion of Figure (4-5), the software development for
this research started at the assembly language level. It might seem that given the choice
of writing source code in C versus assembly language, one would clearly choose writing
the code in C. The reason for starting at the assembly language level is twofold. First of
all, NSWC did all their coding in assembly language and although this code did not have
the control algorithms for the SSCM or the SSIM, it did contain all of the initialization
code (explained below) for the Universal controller. The time constraint place on this
project did not allow for the reinvention of the wheel, so much of the NSWC code was
used for the initialization of the board. Secondly, since there is no user’s manual or
documentation for the Universal Controller, looking at the assembly code and the

schematics was the only way to understand how the board operates on the physical level.

1. Texas Instruments Assembly Code

The TMS320C30 instruction set contains 113 instructions. Most require one

clock cycle to execute. The instruction set can be organized into the following five

functional groups:

Load-and-store

e Two-operand arithmetic/logical

Three-operand arithmetic/logical

Interlocked operations

49

e Parallel operations

This is a very powerful combination of instructions. As it happened, only instructions
contained in the first three groups were used for this research. Reference [16] contains a
detailed description of all 113 instructions.

The program code is written so that more than one control algorithm can be
implemented without reprogramming the PROMs. For example, the NSWC host PC
software contains a menu of different modes to choose from and each mode required a
different control algorithm. Each control algorithm was coded on the same PROM as a
subroutine. Figure (4-6) shows the general flow diagram of the source program. The
board is reset and initialized by turning on the board’s power supply. Once the board is

initialized, it waits for an interrupt from the 87C51 to tell it what to do.

Reset
Initialize the
Board
Interrupts ‘
PLDA
PLDB Wait for
PLD C Interupt
87C51
Timer 1 ‘
Process

Interrupt

Figure 4-6, General flow diagram of the source program

The initialization of the board can be broken down into five categories. A brief

overview of each category is described as follows:

50

a) Initialize Bus Control

The TMS320 has two external interfaces, the primary bus and the
expansion bus. Both primary and expansion buses consist of a 32-bit data bus and a set
of control signals. The primary bus has a 24-bit address bus and the expansion bus has a
13-bit address bus. The primary bus is used to read instructions from the PROM and
read and write to the SRAM and dual port memory. The primary bus must generate one
wait state to read from this slower memory. The primary bus also must also be set to
allow for 1 M bank switching. The bank switching feature of the primary bus provides a
period of time for allowing the PROM and SRAM to release the bus during the dual port
memory reads. The primary bus is programmed to operate as discussed above by writing
428h to the control register for the primary bus which is located at memory location
808064h.

The expansion bus is connected to all of the A/D converters and counter/timers.
To allow for the delay associated with reading and writing to these devices, 2 wait states
are required to be generated by the expansion bus. The expansion bus is programmed to
operate as discussed above by writing 48h to the control register for the expansion bus

which is located at memory location 808060h.

b) Initialize stack pointer

The stack pointer is a 32-bit register that contains the address of

the top of the system stack. This address is the location in memory that register values

' 51

o

are pushed to during an interrupt. The stack pointer is initialized to 809F00h which is

located in one of the internal RAM blocks.

c) Initialize counter/times

As introduced in Chapter III, there are four counter/timers situated
on the I/0 board. Figure (3-7) illustrates that each PLD has its own counter/timer (C/T)
connected to it along with C/T1. Also recall that each C/T has three counters and these
counters can be configured to operate in different modes. C/T1 is called the switching
frequency timer. The switching frequency counter is programmed so that all three
counters operate as a divide by N counter (mode 2 as referred to in Ref. [22]). Figure (4-
7a) shows the operation of mode 2. In this mode, when a count N is written to the
counter control register, the output of the counter stays high for N-1 counts (recall that 1
count is 100 ns) and goes low for the last count before repeating the cycle. The PLDs are
programmed to generate an interrupt when the output of the counter goes low and these
interrupts will be used to implement the control algorithm.

The other three C/Ts are programmed as hardware retriggerable one shot timers

(mode 1 in Ref. [22]). While all three counters on each of these C/Ts are set up in mode
1, only counter 2 is used to generate the duty cycle for both the SSCM and SSIM. Figure
(4-7b) shows the operation of mode 1. The output of the mode 1 counter is “high” until
the gate input of the counter senses a rising edge. This triggers the counter and causes

the output of the counter to go “low” for a count of M. M can be written to the counter at

52

any time and can be changed at any time; however, writing a new M value during the low

output interval will not change the current count.

(a)
tl’igger
(b)

Figure 4-7, (a) Mode 2 divide by N counter. (b) Model hardware retriggerable one shot.
The counter/timers are configured by calling a subroutine called init_ct. An

example of this will be illustrated in Chapter V. This subroutine is listed in Appendix D.

d) Initialize memory pointers

There are eight 32-bit auxiliary registers (ARO - AR7) that can be

accessed by the CPU. The primary function of the auxiliary registers is the generation of

24-bit addresses. Part of the board initialization is to set up four of these registers as

33

permanent memory pointers to frequently accessed memory blocks. Table (4-1) shows

the memory mapping for these registers.

Register Memory Block Address
AR3 Pointer for Internal Memory Block 1 809C00 hex
AR4 Pointer for Dual Port Memory 100000 hex
ARS Pointer for Internal Memory Block 0 809800 hex
AR7 Pointer for SRAM 80000 hex

Table 4-1, Initialized address pointers.

| €) Enable 87C51 interrupt

After all of the above initialization has taken place, the following
two lines of code enable the §7C51 interrupt.

LDI 0008H.IE

OR 02000H,ST
The first statement sets the 87C51 interrupt bit in the TMS320C30’s Interrupt Enable
Register. Table (4-2) shows the 9 least significant bits of the IE register and the
associated interrupt for each. By writing 0008H to this register, bit 3 becomes set. The
second statement sets the Global Interrupt Enable bit (bit 13) in the TMS320C30’s Status
Register. This bit must be set or the C30 will not respond to any interrupts, even if they

are enabled in the IE register.

54

Once the 87C51 interrupt has been enabled, the initialization process is complete.

Appendix D contains the complete listing of the assembly code for operating the SSCM

and SSIM.
Bit 9 8 7| 6| 5| 4 3 2 1 0
Interrupt | timer 1 | timer 0 87C51 PLD C PLDB PLD A

Table 4-2, Least nine significant bits of the IE register and their associated interrupt.

2. Texas Instruments C Compiler

As stated earlier, the software development tools include a C compiler that
produces TMS320C30 assembly source output. This allows the programmer to write the
entire program in C or intermix C functions and subroutines with an assembly language
program.

The C compiler, ‘along with all the TMS320 development software, is installed on
the DOS computer #M051273 in BU-114. The compiler is called up by typing cI30 on
the command prompt in the DSPTOOLS directory. Complete instructions on how to
compile TMS320 C programs is contained in Reference [19].

Now that the Universal Controller has the software and firmware required to
initialize the board as explained above and the ability to receive commands and
parameters from the host PC, a program must be developed to implement an SSIM or

SSCM control algorithm. The development of this code is discussed in the next chapter.

55

56

V. DSP CONTROL IMPLEMENTATION

A. INTRODUCTION

After the Universal Controller is initialized as described in Chapter IV, the
TMS320C30 waits for an interrupt from the host PC to communicate the desired
operating mode. Once it knows what mode to operate in it will perform the desired
control algorithm. The mode setting is nothing more than a pointer to a subroutine that
implements the control algorithm. This chapter first includes documentation on how the
DC-to DC converter control algorithm was implemented using the Universal Controller.
Secondly, a description of NSWC’s ARCP open-loop control implementation and an

outline of the modifications required to implement closed-loop control are presented.

B. DC-TO-DC CONVERTER DSP CONTROL IMPLEMENTATION

The following control algorithm, introduced in Chapter II, is the control law

implemented on the 3 kW converters located in the Power Systems Laboratory at NPS:

d(t) = Dss-(hv +h, [dt)(vo ~v,y)= (i, i) (5-1)
where,

d(t) = time-varying duty cycle Dss = steady-state duty cycle =V /V,(t)

h, = voltage gain h, = integrator gain

v, = buck output voltage h, = current gain

v,s = reference voltage i, = load current

ip = inductor current V,.(t) = input voltage
57

Preceding Page Blank

The only difference between Equation (5-1) and Equation (2-4) is the i /10 term. This
term is required for paralleling two units and since the 3 kW converters are stand-alone
converters they will not be required to operate in parallel.
Equation (5-1) must be implemented digitally. To do this, the following discrete
terms must be defined:
e V.In], V..n], i[n], and i, [n] are the input voltage, output voltage, output
current, and inductor current respectively sampled during switching period
[n].
e V,.is the desired output voltage and can be entered into the program via the
host PC Settings window.
e Dss[n] is the steady-state duty cycle calculated during the current switching

period using the following equation:

Dss[n]|= VVT;]] (5-2)

e vy[n] and v, [n] are the voltage error and the integral of the error calculated
during switching period [n]. The voltage error is simply the output voltage
minus the reference voltage as shown in Equation (5-3). The integral of the
error will be examined below.

Valn] = Vouln] - Ve (5-3)

e vy[n-1] and v, [n-1] are the voltage error and the integral of the error

calculated during the previous switching period, [n-1].

e d[n+1] is the duty cycle for the next switching period.

58

The integration term is calculated using the trapezoid integration method. While
other integration methods can be used, this method was selected because it appeared to be

the simplest numerically. Figure (5-1) shows two consecutive discrete values of v,. The

A
vd

«— T —»

(n-1)T nT n

Figure 5-1, Trapezoid integration.
approximation of the integral is established by connecting the two points with a straight
line and identifying the area of the resulting trapezoid and then adding this quantity to the

prior integration error. This is illustrated in the following equation:

e [1] = Ve [n-1]+§(vd [n-1]+ v,[n]) (5-4)

Using the above approximation for the integral term, Equation (5-1) becomes:
d[n+1] = Dss|n] - h,(v,,[n]- V,,)

b, {g—(vd [0 = 1]+ v,[n]) + veu[n - 1]} by i, [0] -]

(3-5)

It is clear from the above equation that only the integration term requires two
memory states in its calculation. All of the other terms require only the current sampled

values.

1. Control of One DC-to-DC Converter

Controlling one buck converter requires the following I/0 board hardware devices
to be active: two PLDs, two counter/timers, four A/D converters, and one optical
transmitter as illustrated in Figure (5-2). The A/D converters are required to convert the
sensed voltages and currents to digital form. The PLDs and counter/timers generate the
switching frequency and duty cycle to be transmitted by the optical transmitter to the gate

driver circuit on the buck converter. This hardware is configured after the C30 receives

the “DC-to-DC Buck” mode command from the host PC.

1 optical transmitters used ——p

-|+
[
=

L[ADC(output voltage)]

—1 ADC(inductor current) '

——

ADC(output current) I

e |
g

<—4analog inputs used

|

E

X

{ ADC(input voltage)

27

ToRtE

——

Figure 5-2, Active hardware components on 1/0 board for controlling one buck.

60

Chapter IV documented how the Universal Controller was initialized. The last
step in this initialization process was to enable the 87C51 interrupt. This interrupt is used
to communicate to the controller what mode to operate in. By following the procedure
developed in Chapter IV, selecting the DC-to-DC Buck mode will interrupt the C30 and

execute the following interrupt service routine:

LDI @dp_cint, IR0
LDI *+AR4(IR0),R0
CALL read_cmd
ANDN mask_int3,IF

These four lines of code are what start the controller.

The first two lines clear the 87C51 interrupt caused by the host PC. IR0 is an
index register used for indirect addressing. The contents of memory location dp_cint
(which stands for dual port clear interrupt) is loaded into IR0. Recall that AR4 is the
pointer for the dual port memory (Table 4-1). By reading the memory location
*+AR4(IR0) the interrupt to the 87C51 caused by the host PC will clear, which will
allow for future host PC interrupts. The CALL instruction invokes the subroutine
read_cmd. This is the subroutine that reads the dual port memory location that contains
the mode selected (for instance DC-to-DC Buck) and appropriately configures the I/0
board (as shown in Figure (5-2)). After the read_cmd subroutine is finished, the last line
of code clears the interrupt flag to allow for future 87C51 interrupts.

The read_cmd subroutine retrieves an integer from the dual port memory that

corresponds to the desired mode entered in from the PC. For example, when the DC-to-

61

o

DC Buck mode is selected, an integer value of 10 is written to memory location 100001h
within the dual port memory. The program reads this value from the dual port memory
and uses this number to branch to the location in the program that configures the
controller for DC-to-DC Buck mode.

The location in the program for DC-to-DC Buck mode is labeled “cmd10:” and a
listing can be found along with the entire program in Appendix B. Figure (5-3) illustrates
the program flow starting with the 87C51 interrupt. It is this portion of the code that

configures the I/0 board according to Figure (5-2).

. . - 87C51 interrupt
wait for interrupt int3 routine —En—b read_cmd
< return
J ‘7 — save_setup
L <

call
return

clear interrupt cmd10

return from interrupt return
call I

L init_swet

configure startup
ramp fuction

-~

initialize control
variables

~ >

enable
interrupts

|

Figure 5-3, Program flow diagram for 87C51 interrupt routine.

62

The first task includes loading the parameters that were stored in the 8-bit word
dual port memory locations (these are the parameters entered from the Settings window
on the PC software) into the C30 internal 32-bit memory block. This is done in the
subroutine save_setup. This subroutine also calculates the switching period in terms of
number of counts it takes the switching frequency timer to count up to the switching
period time. This is accomplished by dividing the desired switching period by the period
of one count (100 ns) on the counter/timer. For example, if the desired frequency is 20
kHz, then the switching period in counts is (50 us)/(100 ns) = 500 counts. This value is
stored in memory location tms_swp. For reasons explained below, the switching period
count is also divided by two and stored in memory location tms_swp_120.

The next task performed by the program (shown in Figure (5-3)) is to call
subroutine init_swct. This subroutine starts the switching frequency counter timer, C/T1,
by storing the switching period count (tms_swp) in the counter(0) register and counter(1)
register. Figure (5-4) depicts the configuration of this process. Before loading counter(2)
with tms_swp, the processor waits for a count of tms_swp_120 which is half of tms_swp
as explained above. The reason for this delay will become clear later. Counter(0) output
is inputted into PLD A and causes PLD A to'interrupt the C30 once every cycle (int0).
Likewise, counter(1) is inputted into PLD B which causes interrupt 1 (int1) to occur

between the PLD A interrupts. These interrupts will not occur until the int0 and int1 have

been enabled at the end of the read_cmd subroutine.

63

switching
frequency
timer C/T1
Counter
0 >(— tms_swp < tms_swp < tms_swp ’ :> PLDA
Counter \ . : : -——1>
1 < 2 <t tms_swp < tms_swp] tms_swp PLDB
/[2 ; ; ;
Counter tms_swp_120 . :
2 : :
int1
DSP
C30

Figure 5-4, The switching frequency timer is configured to cause PLD interrupts.
Following the program flow diagram in Figure (5-3), the next section of code

configures the startup ramp function. This function implements a linear increase in the
reference voltage to avoid large current and voltage oscillations that would result from a
large step in V.. There are two parameters that are entered from the Settings window that
correspond to this function. These parameters are STEP and DELAY as shown in the
Settings window in Figure (5-5). The Step parameter is the number of voltage steps
desired for the reference voltage ramp from 0 to V,. For example if the reference voltage
(desired output) is 208 volts and the STEP value is 50, the reference voltage would start
at 0 volts and step up by (208 modulus 50) = 4 volts every DELAY time interval. As
implied in the previous statement, the DELAY parameter is the amount of time the
calculated command voltage stays at a given level. This is accomplished by using one of
the C30’s internal timers (timerQ) which causes an interrupt to occur after each delay

count. The delay count is calculated by multiplying the DELAY parameter by 100 and

64

then storing this in the period register of timer0. Each count for the internal timer takes
100 ns (T,) so if the desired ramp-up time is 5 seconds and the number of desired steps is

50 the DELAY value entered at the Settings window should be:

ramp up time 5
100(T,)(STEP) 100*100*10™° *50

DELAY = =10000 (5-6)

Once Vs reaches the desired reference voltage the timer0 interrupt is disabled.

| UNIT 1]
|Ac RMS VOLTAGE |] 120 | IACTRIPCURRENT —| Laoo]
|Ac RMS CURRENT | [10 ‘ |DCTRIPCURRENT] | 200]
!DC VOLTAGE | | 300 | IBOOSTTIME | | 20 |
|DC CURRENT I | 10] IBOOSTDELAYTIME | | 80 |
IOUTPUT FREQUENCY | | 60 | lDEADTIME l ! 160 |
|SWITCHING FREQUENCY | I 10000 | |BLOCKSIZE | | 2000 I
lAc SENSOR j | 500 } loc SENSOR l ! 500 |
lSTEP | | 10 | |DELAY | | 50 I
IKC] l 10] [BT l | 2000 l
LKCB | | 10 l IBI ‘ [2000 '
| ok | | canceL |

Figure 5-5, The Settings window on PC software.
The next step in the listed program flow is to initialize the control values. The
following parameters from the Settings window must me modified since the software

limits these values to be integers: DC VOLTAGE, AC SENSOR, DC SENSOR, KC,

65

KCB, and BT. DC VOLTAGE is used to enter the reference voltage which is stored as
an integer and must be changed to a floating point value. DC SENSOR and AC
SENSOR are the conversion factors needed to convert sampled voltages and currents to
actual values. This value depends on the scaling factor of the sensor. For example, the
voltage sensor for the 3 kW converter has a voltage divider of 100:1 and the current
sensor implements a scaling factor of 10:1. These ratios insure that the limits of the A/D
converter inputs are not exceeded given that the maximum input voltage does not exceed
500 volts and the maximum current does not exceed 50 amps. Recall from Chapter II
that the output of the A/D converters produce 12-bit two’s complement words.
Therefore, a 4.9975 volt input corresponds to a 011111111111, output, and a -5 volt input
corresponds to a 100000000000, output. By dividing the output of the A/D converter by
2" =2048, it will yield a value between [-1,1] which will be the normalized value of the
actual voltage or current. Multiplying this by 5 will give the voltage at the input of the
A/D converter and then multiplying this product by the sensor’s scale factor will yield the
actual voltage. The values that must be entered for the 3 kW converter are therefore:

DC SENSOR =5 * 100 = 500 (5-7)

AC SENSOR =5 *10=50 (5-8)

The remaining 3 parameters, KC, KCB, and BT, are the gains used in Equation

(5-5). These parameters must be modified since the PC software will allow only integer
values between 1 and 60000. A derivation of the small-signal pole locations and the
resultant control gains is presented in Reference [7]. The desired gains and the required

integer values that must be input at the Settings window are listed in Table (5-1). The

66

last column of Table (5-1) contains the scale factor that is used to convert the integer

value to the desired value. The integration term (T/2) in Equation (5-5) is collapsed into

the gain h, and stored in memory location hn. KCB and BT are stored in memory

locations hv and hi respectively.

Gain Parameter Desired Value | What is Entered Factor
h, KC 1.7333 17333 (T/2)10*
h, KCB 0.0008686 8686 107
h BT 0.0105 105 10

Table 5-1, Gains derived in Reference [7] and its associated Settings parameter.
The last item on the program flow diagram illustrated in Figure (5-3) is the enable
interrupts block. As illustrated in Table (4-2), writing 010aH to the Interrupt Enable (IE)
register will enable the interrupt PLD B, 87C51, and timer0.

The 87C51 interrupt in now complete and the Universal Controller is ready to

start the ramp-up and the closed-loop control (Equation (5-5)). Before examining how
| this control is implemented and the duty cycle varied, some discussion is required on how
the duty cycle is produced.
Figure (5-2) illustrates that one optical transmitter is used transmit the duty cycle

to the converter and this duty cycle is generated by the combination of PLD A, C/T2, and

C/T1. The PLD must generate an inverted duty cycle to drive the optical transmitter so
- that it will transmit light for the portion of the duty cycle that requires the switch to be

closed. This prevents the converter from operating (closing the switch) if the Universal

Controller loses power. With this in mind, Figure (5-6) illustrates how the count in the

67

counter(2) register of C/T2 generates the “OFF” portion of the duty cycle. For example,
if a 75% duty cycle is required and the switching frequency is 20 kHz, then a count of (1

- 0.75)x(500 counts) = 125 counts must be written to the counter(2) register.

CIT2

count in counter 2 register
Counter / \
0

v v ‘

» < B
»

ourir PLD A :> "OFF" _ToN" | "OFF" "o

:———— switching period —————p-g———— switching period 7

; | 4
- PLDB PLD B
trigger from C/T1 interrupt a9 interrupt =

Figure 5-6, PLD A generating the control signal

The duty cycle is varied by changing the count value in the counter(2) register.
The control algorithm described in Equation (5-5) is implemented by making use of the
PLD B interrupt. Figure (5-6) shows the point in the duty cycle where the PLD B
interrupt occurs. The reason for placing the PLD B interrupt in the middle of the duty
cycle is based on two considerations. The first consideration is the time needed to do the
required calculations. By placing the interrupt further to the left (earlier in the cycle), it
will allow for more duty cycle calculation time (the duty cycle must be calculated before
the start of the next period, see Figure (5-6)). For example, given a switching frequency
of 20 kHz and PLD B interrupt as shown in Figure (5-6), the time given to calculate the
new duty cycle (d[n+1]) is limited to <25 us. The second consideration is when to
sample the voltages and currents. It is best to sample these signals as far away from the

switching instant as possible to avoid corrupting the samples with noise. Although the

68

duty cycle can vary between [0,1], the steady-state duty cycle is ~# 70% so that most of
the switching time will vary between [.5,1]. By placing the interrupt further to the right
(later in the cycle), it will reduce the chance of sampling during a switching event. After
taking these two considerations into account it was decided to place the PLD B interrupt
in the middle of the switching period as shown in Figure (5-6). This interrupt time can be
adjusted by changing the parameter tms_swp_120 as discussed earlier.

The PLD B interrupt will occur every 50 ps (for a 20 kHz switching frequency)
and it will trigger an interrupt service routine that implements Equation (5-5). Figure (5-
7) illustrates the PLD B service routine. As mentioned earlier, the routine must not take
more than 25 us to implement.

The first task indicated in the flow diagram in Figure (5-7) is to sample the
voltages and currents. The voltage and current waveforms that are to be sampled are
illustrated in Figures (2-2) and (2-3). With the switching frequency constant,
theoretically only one sample per cycle is needed [Ref. 7] to implement Equation (5-5);
however, the noise associated with sampling is significantly reduced by sampling as
many times as possible and then averaging the samples over one switching interval. In
Chapter III, it was shown that the maximum time between samples for the A/D converters
is 2.95 ps. Figure (5-2) shows which A/D converters are used and the physical location
on the I/0 board used to connect the sensor leads. The following code is the beginning of
the PLD B interrupt routine and initializes an A/D conversion:

LDI @inputcs,AR0

LDI @acs,AR2

69

LDI *ARO,R0
LDI *AR2,R1
LDI 00CH,R2
wait: SUBI 01H,R2
BNZ wait

wait for interrupt PLD B__)

PLD B interrupt
routine

A

-~

sample voltages
and currents

-~

CALL mode10

- >

load duty cycle
into C/T2's
counter(2)
register

~—

Lretumn from interrupt

clear interrupt

mode10

-~

call

return

calculate duty
cycle

-

check duty clycle
for proper range

Figure 5-7, Control flow diagram.

The inputcs label is the memory location that contains the address of the
converters marked on the I/0 board as J7 (input voltage) and J8 (inductor current). The
acs label is the memory location that contains the address of the other two A/D converters

marked as J1 (output voltage) and J4 (output current). Table (5-2) shows the address and

70

labels for all ten A/D converters. The first two lines of code loads (load integer) the
inputcs address into AROQ and the acs address into AR2. Since the data bus is 32-bits wide

and each A/D output is only 12-bits wide, only one address is needed to read two

converters.

Label Address | XDO(LSB) to XD11(MSB) | XD16 (LSB) to XD27 (MSB)
acs 804A00 hex J1 (output voltage) J4 (output current)
bes 804B00 hex J2 J5
ccs 804C00 hex J3 J6

inputcs | 804900 hex J7 (input voltage) J8 (inductor current)

adcl_cs | 804D00 hex J11 -

adc2 _cs | 804E00 hex - J12

Table 5-2, A/D converter addresses and labels.

Recall from Chapter III that the A/D converters are configured such that a LDI
instruction with its address as the operand will not only read into the destination register
(in this case R1 or R2) the last conversion value but will also initiate a new conversion.
The next two lines of code initiate the conversion of the sensed analog signal to a digital
signal and reads the previous converted signal. Since the code above initiates the first
A/D conversions of the interrupt routine, the value read is the result of an A/D conversion
that took place in the previous switching period and therefore, discarded. The conversion
process takes 2.95 ps so to get the results of the current conversion, a wait loop that takes

~ 3.2 psto run is applied. The wait loop contains the SUBI (subtract integer which takes

71

50 ns to execute) and the BNZ (branch not zero which takes 0.2 ps to executed)

instructions. After the wait loop is completed, another read is initiated but this time the

signals obtained are from the current switching period. Table (5-2) lists the bits of the

data bus associated with the output of each A/D converter. For example, the instruction
LDI ARO, RO

loads the 12-bit digital input voltage into the first 12-bits of register RO and loads the 12-

bit digital inductor current into bits [16,27] of register R0. The voltage and current are

separated and stored in separate registers with the following code [Ref. 16]:

LDI RO,R1
LSH 04,R1
ASH -14h,R1
FLOAT R1

LSH 14H,RO
ASH -14H,RO
FLOAT RO

Figure (5-8) illustrates how the above code separates the current and voltage into
separate registers and converts them into double precision floating point numbers. After
each sample, a wait loop is run to allow another sample to be taken. The maximum
number of samples allowed due to the time constraints associated with a 20 kHz
switching frequency is 5 samples. This was determined by running the interrupt code
with the simulator. After 5 samples are obtained, the samples are averaged and stored

into memory.

72

Rt

LSH 04H.R1

ASH -14H,R1

RO

LSH 14HRO

ASH -14HRO CLT LT TP PV T T 0§ Bl ot dottage [0 4

Figure 5-8, Reading the A/D output.

The flow diagram in Figure (5-7) shows that the next task is for the program to
call the subroutine mode10. Subroutine model0 takes the averaged samples obtained
above and calculates the duty cycle using Equation (5-5). The code is commented and is
shown in Appendix D. After the new duty cycle d[n+1] is calculated, it is loaded into
register R7.

As explained earlier, the duty cycle is the number of counts that C/T2 counter(2)
contains in its register. The quantization of the; duty cycle is defined by the precision of
the counter/timers. The smallest amount that the duty cycle can change is by 1 count
(100 ns) which corresponds to 1/500 = 0.002 for a 20 kHz switching frequency. There
are limits placed on this count number based on the logic program burned into the PLDs.
The minimum, in terms of percent of the switching frequency count, is 5% and the

‘maximum is 95%. Therefore, if the calculated duty cycle count is above 95% of
tms_swp, R7 is replaced with the maximum value. Likewise if the calculated duty cycle
count is below 5% of tms_swp, R7 is replaced with the minimum value.

There is a comparator circuit on the I/0 board that that will send a “low” signal to

the each PLD if any signal connected to J4, J5, and J6 (from Table (5-2)) exceeds the AC

73

or DC trip current values entered from the Settings window (see Figure (5-5)). The PLDs
could be reprogrammed by NSWC to cause all the switches to open if it received this
“low” overcurrent condition. Currently this capability is not programmed in the PLDs.

Once the duty cycle has been determined the subroutine mode10 is completed and
the program pointer returns to the PLD B interrupt routine. The contents of register R7 is
then stored into the C/T2 counter(2) register. These contents are stored before the next
‘trigger from C/T1 as shown in Figure (5-5). This completes the PLD B interrupt

subroutine and the program now waits for the next interrupt.

2. Control of Two Converters

The Universal Controller can control two buck converters with only a slight

modification to the code. Figure (5-9) shows which hardware components must be

L 2 optical transmitters used ——p or | o I
+J2

I'— . LLADC(output voltage 1)] INT2 INT1 INTO

5 ——tADC(lnduct. current 1) ’ * *
: LADC(output voltage 2) 1 ->{ PLDB | ->| PLDA |

4 [A K A
-| LADC(induct. current 2) l

| Ao |
7 ADC(input voltage 2) v v v

-— ADC(output current 1) | 5@?} | cms ||[| com2 |

{ ADC(input voltage 1) |

)

[al [4]
=

—i ADC(output current 2) I

g

<«4—_ 8 analog inputs used

CrT1

Tty

———

Figure 5-9, 1/0 board configuration for controlling two buck converters.

74

configured on the I/0 board. The first modification includes enabling both the PLD A
and PLD B interrupts. This is done by modifying the last step in the 87C51 interrupt
shown in Figure (5-3) by writing 010bH to the Interrupt Enable (IE) register which will
enable the interrupts PLD A, PLD B, 87C51, and timer0. Since both buck converters will
have the same reference voltage and control gains, no other modifications to this part of
the code is necessary.

With both PLD A and PLD B interrupts enabled, Figure (5-7) is modified so that

the program flow diagram looks like Figure (5-10). The PLD B interrupt routine still

PLD A interrupt i
routine " KPLDA] waitforinterrupt [PIDE) PLD,EJ;}:Z"“‘“

~

- el

sample voltages sample voltages
and currents, load | ¢ and currents, load
previous Vd2[n-1] mode10 previous Vd1[n-1]

and Vvdint2[n-1] and Vdint1[n-1]

-~ Ly - > -~ et

call

Iculate call
CALL mode10 R CALL mode10
returmn retum
-
-~ - Nl ~ -~
load duty cycle
into C/T3's check duty clycle load duty cycle
counter(2) [for proper range into C/T2's
register counter(2) register
~ > ~ >
store Vd2[n] and store vd1[n}] and
Vdint2[n] fo— return from interrupt — Vdint1{n]
clear interrupt clear interrupt

Figure 5-10, Program flow diagram for controlling two buck converters

75

samples and averages the currents and voltages of the buck converter connected to PLD
A (buck 1). Now PLD A is used to sample the voltages and currents of the second buck
connected to PLD B (buck 2). Figure (5-4) does not change; therefore, the switching
periods will be synchronized in that buck 2 will start its switching period midway into
buck 1’s switching period. The model0 subroutine is only slightly modified. Since each
buck has a different voltage error (V) and integral of the error (V,,), these variables are
updated before the mode10 subroutine call shown in Figure (5-10). The model0
subroutine modifies these variables and uses them to calculate the new duty cycle for
each interrupt. After the program returns from the mode10 subroutine, the updated V, and

Ve values are stored in memory to be used for the next duty cycle calculation.

3. Design Development

Much of the design development involved deciphering how the Universal
Controller code generated a fixed duty cycle. The task was cumbersome since the only
way to test code modifications was to burn the code into the PROMs and then place the
PROMs in the controller and check to see if it worked.

The next step was to sample signals using the A/D converters and then convert
these digital signals to the proper levels for application in the control algorithm. A
simple feed-forward controller was developed to aid in understanding this process. The
feed-forward controller simply samples the input voltage and a duty cycle is calculated

using only the D term (Equation (5-1)).

76

Probably the most difficult task involved implementing the integrator. Although
the trapezoidal integration technique is straightforward, it took many attempts before
learning why it was not working properly. The problem was simply a matter of not
storing the sampled signals in memory before using them in calculations. If the sampled
signals were only loaded into one of the CPU registers and not stored into memory the
integrated value became very large. Again this was a long process due to the required

PROM burning and testing.

4. Results

The development of the control law relied on digital simulations implemented
using the Advanced Continuous Simulation Language (ACSL). Reference [7] contains
the complete development of the control law including simulation development and
compares the simulated results with the actual results. Figure (5-11) shows the
simulation results for a periodic change in load from 10% (291 W) to 100% (2.91 kW) at
a frequency of 20 Hz. Both the output voltage (labeled Vout3) and the output current
(labeled iout3) are plotted. Figure (5-12) shows the actual hardware results for the same
periodic load change with the 3kW buck converter using the Universal Controller. The
plots are remarkably similar. The output voltage in Figure (5-12) is AC coupled so that
the plot does not show the 208 V DC value that the variations are riding upon. Asa

result, the noise associated with the sensing devices appears more pronounced in Figure

(5-12).

77

Vout3 Response

sdwe) ginol
(syion) ginoA () gwnol

N Fe— ==k = ===l = =t 4
-~ 1 1
| 1
|]
m] '
||||| e e
Al ' 1
| [
o 1 i
o o e e - o - -t
- |]
b 1
1 1
| 1
b3 il R
o |]
prd * t
t t
mw m ||||| | RO [—
Q. 1 1
(2] 1 J
m_“_. ' |
o 1 1
™ M= =r==="" === =
~ 5) '
(o} t 1
= 1 I
o Hea-a | I
©] |
1 1
[]
1 '
3 SN IR i
] 1
1 L
1 1
(= S | IR PR .
<]]
]]
] 1
o 1 1
R el T AR T
1] 1 Rid | |
1 1 Il L. 1 1
n O v O n o wn o
-~ o O (=] ~— -—
N &N N N -

time (msec)

Figure 5-11, Simulation results for 10% to 100% change in load [Ref. 7]

Vout3 Response (ac coupled)

100

- -

80

60

40

20

1
J
¥
1
1
i
f
1
L
o wn o (o]
-)

(s3jon) €InoOA

iout3 Response

100

60

time (msec)

20

!

1

1

'

1

1

1

1

1
o w o
~

(sion) ginol

Figure 5-12, Actual results using the buck converter and Universal Controller [Ref. 7].

78

C. ARCP INVERTER DSP CONTROL IMPLEMENTATION

The Universal Controller was initially designed by personnel at NSWC to control
an ARCP. The firmware provided with the controller contained the program to operate
the NSWC ARCP inverter both in open and closed-loop configuration. For this reason,
most of this research focused on implementing the DC-to-DC converter closed-loop
control. In an effort to not reinvent the wheel, the NSWC code was used to test the
PENN State ARCP inverter open-loop. As a result of these tests, problems with the
ARCP hardware were discovered and consequently this delayed the investigation of the
closed-loop control algorithm for the ARCP. The remainder of this chapter contains a
discussion of the firmware developed by NSWC for open-loop control of the ARCP

inverter and introduces a proposed for a closed-loop implementation.

1. NSWC Open-Loop Implementation

Just as in the case of the buck converter, the I/O board’s hardware must be
configured properly. Figure (5-13) shows the I/O board hardware that is used to operate
the ARCP inverter open loop. All the PLDs and counter timers are used to generate the
switching period and duty cycle signals for all three phases of the ARCP inverter. Six
optical transmitters are used to send an “upper switch” and “lower switch” gate signal to
each phase of the inverter. The NSWC code must be burned into the PROMs and
installed on the Universal controller (Appendix C contains the location of the code and

instructions on how to burn the PROMs). Then by selecting the “Test mode” under the

79

Mode menu item on the PC software, the controller will operate the ARCP inverter open

loop.

6 optical transmitters used ——p tow | up

—— == 7 L% ¥
——— | |

T

¥

SOEHE g bR

Figure 5-13, 1/0 board configured to operate the ARCP open loop.

While the “DC-to DC Buck” selection corresponds to cmd10 and mode10, the
“Test mode” selection corresponds to cmdl and model. By selecting “Test mode” the
PC downloads an integer value of one to memory location 100001h within the dual port
memory. The read_cmd subroutine then reads this value and then branches to the portion
of code associated with the ARCP open-loop operation. The program flow is
documented in Figure (5-14) and is similar to how the Universal Controller is configured
for mode10 as shown in Figure (5-3).

The flow diagram shows that there are three subroutines called from the cmd1
section of code. The save_setup subroutine is very similar to the subroutine used in
cmd10. It loads all of the parameters entered from the Settings window on the PC to the

internal RAM within the C30. Just like the setup for the buck converter, the parameter

80

tms_swp is calculated and unlike the buck converter the parameter tms_swp 120 is set to
two-thirds of the switching period count. This is used in the init_swct subroutine and

will be explained below. It also calculates the following three parameters used in

wait for interrupt int3) 87C51 interrupt ’_?:'aT’ read_cmd

routine
¢ return
ﬂ save_setup
call
¢ return
clear interrupt cmd1
return from interrupt et _
call

A
> init_swct

set pointer for
phase b and ¢

ﬂ —Pp sine_tbl

return

inable interrupts

Figure 5-14, Program flow for the open-loop ARCP operation.

generating the PWM signal:

tms_swp

tms_ta = (5-9)

tms_swp — 2(tms;_ dt)

tms_th =
2

(5-10)

81

*
tms_stepx = tms_of *tms_blk (5-11)
tms_swf

where
tms_swp = switching period count calculated in save_setup subroutine
tms_dt = dead time entered from the Settings window
tms_of = desired frequency of the ARCP output entered from the Settings window
tms_blk = block size of the sine-wave table entered from the Settings window
tms_swf = switching frequency entered from the Settings window
The above equations will be explained later in the chapter. For now, it suffices to

say that they are calculated at this point in the flow diagram.

switching
frequency
timer C/T1
Counter ’\ P P ::> PLDA |-
0 /[4—tms_swp tms_swp < tms_swp
Counter \ tms_swp_120 : : : |]
1 /I« >t tms_swp < tms_swp : :) PLDB
Counter \ © tms_swp_120 - : - : [
2 A : : —— tms_swp: < tms_swp: :> PLDC

Il il

Figure 5-15, Initializing the switching frequency timer counters.
The init_swct subroutine shown in Figure (5-14) is also the same subroutine used
for the buck converter except that the value of rms_swp_120 is different. As explained

above, the save_setup subroutine calculated this value to be two-thirds of the switching

82

period count. So each counter waits this many counts from when the previous counter
started before starting its own count as shown in Figure (5-15). This causes each counter
output signal to be separated by one-third of a cycle (120 degrees). Thus, this
implements the desired phase displacement required in a balanced 3-phase system.

The next task indicated in Figure (5-14) is for the program to call the subroutine

sine_tbl. This subroutine simply generates one period of a sine-wave using the following

equation:

(5-12)

R0=sin(27N)

tms_blk

where

N = is an integer value that goes from 0 to (tfms_blk -1) in unit increments
tms_blk = block size entered from the Settings window on PC
RO = CPU register 0

Equation (5-12) is implemented in a loop and generates a lookup table which is
stored in the SRAM. The length of the lookup table is ms_blk.

The last step indicated in the program flow diagram of Figure (5-14) is to set a
pointer for phase b and c¢. The pointer for phase a is the beginning of the sine-wave
lookup table. The auxiliary address register‘7 (AR7) points to this location. Two other
variables fms_23 and tms_13 point to an address offset from AR7 by 1/3*tms_blk and
2/3*tms_blk respectively. The size of the lookup table is then stored in the block-size
register (BK) which is used for circular addressing which will be explained below.

Finally, all four interrupts (PLD A, PLD B, PLD C and 87C51) are enabled.

83

To explain how the PWM signal is generated from the above equations and sine-
wave lookup table, it is best to consider only one phase at a time. Figure (5-16) is the
flow diagram for phase a. Just like the buck converter, the value stored in the counter(2)
register of C/T2 will determine the duty cycle. For the ARCP the duty cycle is calculated
using the following equation:

dutycount = tms_tb* R7+tms_ta (5-13)
where

R7 = value read from the sine-wave lookup table

tms_ta = Equation (5-9)

tms_tb = Equation (5-10)

wait for interrupt PLD A > pLDrQJ{i‘:,:"uPt

N

~

load value from
sine-wave lookup mode1
table

- L -

call calculate duty

CALL mode1 cycle

return
<

- >

load duty cycle
into C/T2's
counter(2)
register

-

return from interrupt clear interfupt

Figure 5-16, PWM signal generation for phase a.

84

Retrieving the sine-wave value from the table is accomplished using the following code:
LDI *+AR3(tms_stepx), IR1
LDF *+AR7++(1R1)%,R7
This code makes use of the circular addressing capability of the C30 microprocessor.
Circular addressing in this case allows the pointer to the lookup table to be incremented
by tms_stepx (Equation (5-11)) after reading the current memory location pointed to by
AR7. Once IR1 reaches the value stored in the block-size register (BK), the pointer
moves back to the beginning address.

This code is executed each switching period and for a 20 kHz switching rate that
is equivalent to every 50 ps. Equation (5-11) yields a value for tms_stepx that will allow
the above codé to cycle through the lookup table in the desired time corresponding to the
output frequency. For example, if the desired output frequency of the ARCP is 60 Hz,
this code must complete one circulation of the lookup table in 16.7 ms (1/60 s). If the
block size of the lookup table is 2000 and the switching frequency is 10 kHz, tms_stepx
would be 6 as Equation (5-11) yields. With 6 as the step size, it would take 2000/6= 333
steps to cycle through the lookup table and at 50 ps per steb, it would take 333(50 ps) =

| 16.7 ms for one complete cycle which is the desired period for a 60 Hz output.

The duty count as shown in Equation (5-13) uses Equations (5-9) and (5-10).
Figure (5-17) illustrates how the PWM signal is generated. The value of tms_fa is set to
half of the switching period count, as explained earlier, so that when R7 is zero (at

location a in Figure (5-17)) the duty cycle is at 50%. The next time the duty count is

85

calculated R7 contains the value from the sine-wave lookup table found at location b.

Each interrupt the duty count increases until R7 reaches the top of the sine-wave (at

a) | |
o | | I

| | |
c) I l_l
o | []

1 |]
> L n
0 L —

Figure 5-17, Generation of PWM signal using Equation (5-13).
location ¢). From here the duty count starts to decrease and returns to a 50% duty cycle
as shown by location d. The duty count goes below a 50% value once R7 starts to go

negative (at location €). The duty count reaches its minimum value when R7 = -1

86

(location f) and returns back to 50% as shown by location g. The amplitude or maximum
duty cycle is controlled by Equation (5-10). The parameter tms_dt can be changed from
the Settings window on the host PC. By decreasing this value the amplitude of the
control sine-wave increases. The minimum tms_dr allowed is 14. The reason for this is
for the same reason the buck converter duty cycle cannot exceed 95%, the PLD logic will

not allow a 100% duty cycle.

2. Proposed Closed-Loop Implementation

The closed-loop control of a three-phase inverter may be implemented in a
number of ways including sine-triangle modulation, bang-bang hysteresis control, and
space vector modulation [Ref. 10]. Sine-triangle PWM is attractive from the standpoint
that the harmonic spectrum is well understood and the switching frequency is fixed by the
carrier waveform. The control signals may be established by regulating stationary
reference frame quantities or synchronous reference frame quantities. The advantage of
manipulating synchronous reference frame quantities is that they are constants in the
steady state so that the integral action in a PI controller will generate zero steady-state
error. In order to regulate synchronous reference frame quantities, we need to convert the
measured abc quantities to the synchronous reference frame by employing a
diffeomorphic transformation. At which point, we can apply the PI control algorithm
then inverse transform those quantities and retrieve abc control voltages required by the

sine-triangle PWM control [Ref. 10].

87

In this research effort, it was decided that the preliminary closed-loop control for
the ARCP would regulate the currents out of each phase. Currents were selected as
opposed to voltages since the ARCPs were already equipped with sensors providing
scaled measurements of the currents. For the following algorithm description, superscript
‘s’ will denote the stationary reference frame, superscript ‘e’ will denote the synchronous
reference frame, subscripts ‘abc’ will denote actual phase quantities, subscripts ‘qd’ will
denote transformed quantities, and a superscript ‘*’ will denote a commanded value.

The algorithm is initiated by specifying the commanded synchronous reference
frame currents:

e

is" = amplitude of desired control (5-14)

if =0 (5-15)
Here the d-axis commanded current is arbitrarily set to zero for convenience. If the load
is a three-phase induction machine, then this commanded value may be fixed at some
other number. To calculate the stationary reference frame currents, two of the three phase
currents must be sampled and transformed using the following transformation:

IR

3 3

where
1,[n] = sampled phase a current

i,[n] = sampled phase b current

88

The above equation assumes that the phase currents necessarily sum to zero. The
next task is to transform the stationary reference frame currents to synchronous reference

frame currents using the following transformation:

sl e] o I

where

6, = electrical angle of the desired abc quantities

The values of sin(6) and cos(p) can be found using the sinewave lookup table in
the same manner as in the open-loop case described above. The PI control signals are
generated using the commanded synchronous reference frame currents in Equations (5-
14) and (5-15) and the calculated synchronous reference frame currents in Equation (5-

17). Using the discrete integrator implementation of Equation (5-4) the PI control

equations becomes:
e . . T, .
Vy 0] = Ko (i [n]) + Ky {zm [n-1]+ 5(1“ [n-1]+iy, [n])} (5-18)

V; m[n]= K (isa[n]) + Ky, {idim’d [n-1]+ -}(id,d [n-1]+i,, [n])} (5-19)
where
igq= i [n]-i}[n]
iga= ig [n]-i5[n]
K,,and K,; = proportional gains

K, and K, = integral gains

89

. T, :
g [1] = g [n- 1]+ E(Zd,q [n-1]+i,, [n])

:) T, .
Ldint,d [n] = Lgintd [n - 1] + 5 (ld,d [n - 1] tlgg [n])
Before abc-control signals are calculated, the control signals above must be

inverse transformed back to the stationary reference frame using the following inverse

transformation:

[v;,,,, [n]]) { cos(6,[n]) sin(6, [n])J[v;,,,, [n]

Vi u[n]| |-sin(6,[n]) cos(6,[n]) | V¢ ,,[n]

The stationary reference frame voltages are then used to calculate the abe-control signals:

} (5-20)

Varr = Vop (5-21)
1os V3.,

Vop = _EVq,PI - —2‘ d,Pl (5-22)

Vc,PI = ‘Va,PI - Vb,PI (5-23)

These control signals are translated to dutycount for each phase as explained in

the previous section using Equation (5-13). The following dutycounts are then written to

the appropriate counters:

dutycount, =V, * R7 +tms_ta (5-24)
dutycount, =V, , * R7+tms_ta (5-25)
dutycount, =V, * R7 +tms_ta (5-26)
where
R7 is a CPU register

90

tms_ta= 50% of switching period count.
The addresses for the phase counter/timers are shown in Figure (3-3) (ct_phasea,
ct_phaseb, and ct_phasec). The following code illustrates how the phase a counter/timer
is updated with the new dutycount in register R7:

LDI @ct_phasea,AR0

STI R7,*+AR0(2) ; Store LSB of counter 2
LSH -08H,R7
STI R7,*+AR0(2) ; Store MSB of counter 2

The steps needed to go from open-loop control to closed-loop control are simply
software related. The PI gains and the desired synchronous reference frame commanded
current values can be entered from the Settings window. It is anticipated that once this
algorithm is successfully implemented, extensions to more exotic algorithms and electric

machine controls will be quite straight forward.

91

VL. CONCLUSIONS

A. SUMMARY OF RESEARCH WORK

The Universal Controller was designed by engineers at NSWC and populated,
soldered and configured at NPS by the Power Systems Group. The DSP controller allows
for greater flexibility in control implementation which enhances the research efforts
pertaining to the DCZEDS program. The focus of this research has been to document
how the Universal Controller works and then apply this knowledge to implementing
closed-loop control algorithms for a buck converter and a 3-phase inverter.

In Chapter II, the basic operation and specifications for the 3 kW DC-to-DC
converter (SSCM) and the 30 kW ARCP Inverter (SSIM) were discussed, and the
motivation for using DSP control was addressed. There are many commercial boards that
are available here at NPS, and in Chapter III an overview of these boards was presented
along with the specific limitations that made them unsuitable for application in SSCM
and SSIM control. Next, the hardware that makes up the Universal Controller was
described and investigated. In Chapter IV the firmware for initializing and interfacing all
of the hardware components was presented along with the basic operation of the primary
components. The PC software which interfaces with the Universal Controller was also
described. The implementation of the closed-loop control for the DC-to-DC converter
was described and documented in Chapter V. Chapter V also contains an explanation and

supporting documentation for the open-loop control of the ARCP inverter. Finally, an

93

Preceding Page Blank

outline of the modifications required to implement closed-loop control for the ARCP

inverter was presented.

B. NOTABLE CONCLUSIONS

The Universal Controller is a powerful and useful tool. The hardware is uniquely
setup to facilitate controlling not only the SSIM and the SSCM but many other PEBB
applications. The closed-loop control implementation for the DC-to-DC converter
yielded acceptable results that mirrored those obtained for simulation.

There were a number of limitations discovered while analyzing and programming
the Universal Controller. One of these limitations includes the inability to program a
100% duty cycle. While this was not a problem for the tests that were conducted in
Reference [4], it can limit the dynamic range of the linear control and introduce
additional harmonics. Another limitation that can be resolved by changing the logic

within the PLDs is to enable the PLD to shutdown when the overcurrent interrupt occurs.

C. RECOMMENDATIONS FOR FUTURE WORK

Currently all the programming for the Universal Controller is done using TMS320
assembly language. The program is then burned into the PROM before installing it on
the controller. This increases the development time to test and debug a new program.
Writing the code in a higher level language like C would make it easier to develop and
debug new or modified control algorithms. Another time saver would be to modify the
host PC software to allow the user to download a program or subroutine into memory

without reburning the PROM. The Settings window should be modified or a new

94

Settings window for the buck converter added to facilitate the variables unique to buck

converter control. Other recommendations include:
¢ developing the ARCP current control and extending it to voltage control
¢ running multiple Universal Controllers from one PC
e investigating other buck control algorithms

e exploring different implementations for the discrete integration

investigating digital filtering of signals to reduce the network noise.
The Universal Controller is an integral part of the PEBB vision. The advantages
of the Universal Controller over an analog controller for this application are numerous.

The added flexibility that this controller adds to the DCZEDS network simulator makes

this a valuable research tool.

95

APPENDIX A. PARTS LISTING FOR THE UNIVERSAL CONTROLLER

Part # QTY IO | QTY CPU | Part Description
C0110 95k11 0 1 16 MHz Clock
C0110 95k08 0 1 40 MHz Clock
VF150 8840 1 0 20 MHz Clock
IDT7130 SA35P 0 1 1kx8 dual-port RAM
D87CS51FA 0 1 Microprocessor
DM74AS373N-ND |1 1 20-dip octal latch w/ tri-state
CY7C274-30WC 0 4 32kx8 EPROM
MC74HC14AN 0 1 14-dip Inverting Schmitt Trigger
MM74HCO8N-ND | 0 1 14-dip quad 2-input AND gate
TMS320C30GEL40 | 0 1 DSP chip
IDT71256SA35P 0 4 SRAM
DM74AS244N-ND | 0 1 20-dip octal tri-state buffer
SN74LS244N 4 0 Octal buffers
MM74HC244N-ND | 2 0 Octal buffers
SN74HC244N 2 0 Octal buffers
EPM5016 DC-15 0 1 Programmable Logic
HP9429 T1521 12 2 Opto Transmitter
HP9507 R2521 0 2 Opto Receiver

97

Preceding Page Blank

Part # QTY IO | QTY CPU | Part Description
AD536AJD 6 0 RMS to DC Converter
LF347BN-ND 4 0 14-dip quad JFET op amp
HA-1-4900-8 2 0 Precision quad Comparator
LF13508D-ND 1 0 16-dip 8-Channel JFET Analog
Multiplexer
MAX120CNG-ND |11 0 12-bit AD Converter
AD7247IN 1 0 AD Converter
CD74HCT377E 5 0 Octal D-Type F-F w/ Data Enable
DM7427N-ND 1 0 14-dip triple-input NOR gate
CD74HCT32E 2 0 14-dip quad 2-input OR gate
DM74AS04N-ND |1 0 14-dip hex inverter
CD74HCTI138E 1 0 16-dip 3-to-8 line decoder
CP82C54-12 4 0 Programmable Interval Timer
CD74HCT154E 1 0 24-dip 4-to-16 line decoder
EPM5032 DC-25 3 0 Programmable Logic (?)
SN74LS93N 1 0 4-bit Binary Ripple Counter
96 sock conn 0 1 3-row 96-pin straight connector
96 plug conn 1 0 ditto
12-pin jump 0 1 12-pin jumper
2-pin jump 0 2 2-pin jumper

98

Part # QTY IO | QTY CPU | Part Description
16-pin strai conn 1 0 same
10-pin strai conn 1 0 same
34-pin strai conn 1 0 same
Spos DIP sw 1 0 same
SW403-ND sw 0 1 Momentary Switch
p4887-ND .1uF 30 14 same
47uF (50V) 2 0 same
p1259-ND 100uF 2 0 same
p1255-ND 10uF 0 1 same
p2101-ND 22uF 11 0 same
p2063-ND 4.7uF 6 0 same
22k 8-pin Res 0 3 same
2.2k 10-pin 1 0 same
330 16-pin 2 0 same
82k resistor 0 1 same
15k pot resis 1 0 same
10k resistor 4 0 same
2.2k resistor 1 1 same
330 resistor 0 2 same
270 resistor 0 2 same

99

Part # QTY IO | QTY CPU | Part Description
Green LED 0 1 same

Red LED 0 1 same

6lyr IOBRD 1 0 same

CPU BRD 0 | same

28pin wd sock 0 8 same

28pin nar sock 3 0 same

14pin sock 0 1 same

20pin nar sock 0 1 same

40pin wd sock 0 1 same

48pin wd sock 0 1 same

181pin sock 0 1 same

Terminal Blocks 12 1 same

5m HFBR-PWS005 | 12 4 Fiber-Optic Cabling

100

APPENDIX B. SCHEMATICS FOR THE UNIVERSAL CONTROLLER

BIBRIXBE

e

¥SEBIENE

xunnk:nﬂnlwmmmm ﬂiwm

ESBBERRN

=sooxsas

eauoxRRURRLLTLL

il

T

| XXHRRRE LR

P NI A

mmmmmmm

n|

w
s,
i

s

3
bt

eco2a0,
Z22TE2
iDeooac:

050

$2seco
355

K

i

VXL BT

{3
&

ummmmuuumuwmw nzmmnmnummmmmcmmwwm nmn-mmamm-mm =

T S T L L L T T T

fauscon

m_... o= RTTDEEDE TRNTARITIITTEYY
R 3

AT IR TS

el |_H;)(,\;.h,|m4nn=.r¢v

CPU board

1-
101

B-

Figure

g

28

ERED

denuaaws

SRR €

Y

IS <

CLRRBITINALY ¢

VAR o

B CEPI PR

Kl

2L ¢

CHRTAN (-

"UDE.3

NSWCEDAD
et

Ty
N, W0 3162

C | ALADG CORERTERS

Oode), 10

Figure B-2 - Analog converters.

102

tters.

1

s

Xe

LA

4

Wt

103

e

2

LI AR

NRNNEN]

ek

L)
B

BEFAULORTURET

Figure B-3 - The counter/timers and optical transm

ot xH) J l{u‘\ I
AN J_i.r_ ”‘J._
= hu o r e
[_ﬂ.“", apt ‘e’\n I 'Hm\\.n T y
W T 5 i
I] i_“l S/ 1.
wlH o T st
]
I i
A
Aoy
T
N
2
T
L) .
& T] 3
g o M
[__n. T L)D.L
AR ¢ s il [T
.

aa:.ma«——-—‘—’-jl_/ '
s

RN S EE T S maan

3
=

-}
:

RERKRRER
2 E%x',

e el
Ul

Y gL

e T Dworma rber
NG COPARRIORS
TN T

Figure B-4 - The comparator circuit.

104

Figure B-5 - The PLD logic.

105

APPENDIX C. SOFTWARE INSTALLATION

A. HOST PC SOFTWARE

directory.

The software is located on PCPWR?7 in the Power Systems group laboratory.

There are five files located in the c:\PebbUC\hostpc directory. The file names are:

Pebb.exe
Cmdialog.vbx
Mscomm.vbx
Spin.vbx

Threed.vbx

To install the software on a Window 3.1 machine (this will not work in Windows 95) just

load all the vbx files under the c:\windows\system directory and load the Pebb.exe in any

The software is installed on the only Windows 3.1 machine located in the Power
Systems Group Laboratory #m051992. The Pebb.exe is installed in the
c:\PEBB\win3 1new directory.

The C++ code that generated the Pebb.exe file above is located on the PCPWR7
machine in the ¢:\PebbUC\hostpc directory and is saved as a C++ project in compressed
format. The two files Pebb.zip and Pebbres.zip are written in Visual C++ version 1.5 and

will not work with version 4.0 (Windows 95).

107

Preceding Page Blank

B. INSTALLING CODE ON THE EPROMS

There are two different assembly codes that are mentioned in this thesis. The
code received from NSWC for the ARCP (Pebbfix.asm) and the code developed for the
buck chopper (npsbuck.asm). Both of these codes are stored on PCPWR?7 in the
¢:\PebbUC\c30 directory.

The assembler is located on the DOS PC #M051273 under the c:\DSPTOOLS
directory. There are many files in this directory and among them are two files that have
been setup to aid in the assembly process. The first file is a batch file called
“NPSBUCK.BAT”. This file requires the input file name (the file you want to assemble)
to be npsbuck.asm and that it resides in the same directory it is in. By typing “npsbuck”
at the command prompt the batch file will do the following:

e assemble the npsbuck.asm file

¢ link the output object file produced from the assembler with a command file

e convert the linked file into Intel hex for downloading to the EPROM

The second file is “NPSBUCK.CMD” and this is the file that the linker uses in the
batch file described above. The contents of this file are as follows:

math.obj divi.obj

-heap 0x800

-m npsbuck.map

-e init

-0 npsbuck.out

MEMORY

{
VECS: org = 00000h length = 0040h
ROM: org = 00040h length = 01fcOh
SRAM: org = 080000h length = 080000h
DUAL _PORT: org=100000h length = 080000h
XBUS: org = 804000h length = 2000h

108

RAMI: org = 809800h length = 0400h

RAM2: org = 809c00h length = 0400h
}
SECTIONS
{
vecs: load = VECS
text: load = ROM
.data: load = ROM
sram: load = SRAM
dualport: load = DUAL_PORT
xbus: load = XBUS
raml: load = RAM1
ram?2; load = RAM2
}

The math.obj and divi.obj are subroutines used by the program. The subroutine math.obj
is provided by Texas Instruments and contains many math functions like the sine function
use to produce the sinewave lookup table. The divi.obj is a subroutine written by an
engineer at NSWC to divide integers.

The -heap 0x800 is used to set the heap size for the C memory pool command
malloc() to 800 words. The -m, -e, and -o are linker options that produce a map listing of
the output, defines a global symbol that specifies the primary entry point for the output
module, and specifies the name of the output file, respectively.

The MEMORY and SECTIONS headings are linker directives. The MEMORY
directive allows the memory to be configured as shown. And the SECTIONS directive
controls how sections are built and allocated.

The output will consist of four Intel hex files NPSBUCK.I0, NPSBUCK.11,
NPSBUCK.I2, and NPSBUCK.I3. These are the files that must be downloaded to the

four EPROM chips. A batch file named CDU.BAT is located in the same directory as the

109

other files mentioned above. By typing cdu at the prompt, the Universal Programmer and
Tester (EPROM burner) will open. The Device menu item will be highlighted. Press the
D key and a drop down menu will be shown. Select EPROM from this dropdown menu
and a series of windows will ask what manufacturer and type of EPROM you have. Once
you selected the desired EPROM, you are now ready to load the hex file to the buffer. To
do this select 2 (Load Bin or Hex file to buffer) from the selection window. The window
will now giver you the directory listing. Find the ¢c:\DSPTOOLS\NPSBUCK.IO0 file and
highlight it and press enter. The program will then prompt you for file type, enter “I” for
Intel hex. Next it'will ask you “file start seg. (0000):” just hit the enter key. The last
prompt will ask what you want the unused bytes to be. Enter “1” for zeros, and then hit
the enter key. Now the file NPSBUCK.IO is loaded into the buffer. Place a blank
EPROM in the socket on the programmer module and enter “A”. This will load the
program into the EPROM. When it is done loading it will beep and then you should
repeat the same process over until all four EPROMS are loaded. The EPROM with
NPSBUCK.IO is placed in socket U5 on the CPU board; likewise *.I1 goes in U6, *.12

goes in U8, and *.I3 goes in U9.

C. MICROCONTROLLER SOFTWARE

The assembly code for the microcontroller is located in the PCPWR7 computer in
the c:\PebUC\87C51 directory. The assembler for this device is on the same machine as
the host PC software in the power lab. The directory, c:\Pebb\intel\compiler, contains the

assembler and the object code (-hex extension) in the format accepted by the EPROM

110

programmer. This file must be copied to a floppy disk and then transferred to the DOS
computer to be loaded into the buffer of the programmer in the same manner as above

except that the device picked must be the 87C51.

D. PROGRAMMABLE LOGIC DEVICES (PLDs)

There are two PLD programs that are required by the Universal Controller. One
for the three PLDs that generate the duty cycle and the other for the address decoder. The
PLD code is located in the c:\PebbUC\PLDs directory. The files have the “pof”
extension which means they are in the format needed by the EPROM programmer. The
duty cycle PLD code is in the dcpld.pof file and the decoder PDL code is in the
decoder.pof file. To program this into the chips, copy these files on a floppy disk and

transfer them to the DOS computer to be loaded in the program buffer of the programmer.

111

112

APPENDIX D. ASSEMBLY CODE FOR DC-TO-DC CONVERTER

3 3k ok 3k 3k ok sk sk sk ke sde ok sk s sk ok ok ok sk ok ok sk sk sk ke sk e ok 3k sk 3k sk sk sk sk sk sk sk ok sk ok ok sk sk sk ok ok sk ok ok ok ok ok sk ke ke skeok ok

¥ K% ¥ % ¥ ¥

NPS POWER LAB
TMS320C30 MODIFIED CONTROL CODE
BY RON HANSON
25 Feb 97

3k 3k ok ok sk ok ok ok sk ok ok ok ok ok ok ok sk sk sk ke ok sk ok ok o ok ok ok sk i sk 3k ok sk ok ok sk sk sk sk ok sk ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ke ok

*

reset
int0
intl

int3

tint0

sram
blk0
blk1
stck
ctrl
xbus

pbus

title "BUCK"

.global reset,init
.global int0,int1,int2,int3

.global tint0
.global isr0,isr1,isr2,isr3
.global time0
.global FPINV divi
.sect "vecs" ; Named section
word init ; RS- loads address init to PC
.word isr0 ; INTO- loads address int0 to PC
word isrl ; INT1- loads address intl to PC
.space 1 ;
word isr3 ; INT3- loads address int3 to PC
.space 4 ; Reserved space
word time0 ; Timer O interrupt processing
.space 34 ; Reserved space
.data

.word 0080000H ; Beginning address of SRAM

.word 0809800H ; Beginning address of RAM block 0
.word 0809CO0H ; Beginning address of RAM block 1
.word 0809F00H ; Beginning of stack

.word 0808000H ; Pointer for peripheral-bus memory map
.word 0000048H ; Xpansion bus: 2 wait states, external

; RDY not in use (88)

-word 0000428H ; Primary bus : 1M bank compare, 1 wait

113

* ; states, external RDY not in use

timOctl word 00003C1H ;Internal timer 0: 1111000001; (301) 1100000001
*

*

*

dp_mem .word 0100000H ; Pointer for dual port memory (command reg)

dp int .word 00003FEH ; Pointer for setting interrupt flag

dp_cint .word O00003FFH ; Pointer for clearing interrupt flag

*

tms_oaci .set 0000001H ; Ac trip current level

tms_acv set 0000002H ;test

tms_bdly .set 0000003H ; Boost delay
tms btime .set 0000004H ; Boost time

tms_odci .set 0000006h ; Dc trip current level
tms_Vref set 0000007H ; Dc voltage

tms_dt .set 0000008H ; Deadtime

tms_of set 0000009H ; Ac frequency
tms_swf set 000000aH ; Switching frequency
tms_blk .set 000000cH ; Block size

tms_acs set 000000dH ; current sensor
tms_dcs .set 000000eH ; voltage sensor

tms_step .set 000000fH ; Step

tms_delay .set 0000010H ; Delay

tms_swp .set 0000011H ; Switching period
tms_stepx set 0000012H ; Step

tms_ta .set 0000013H ;ta constant
tms_tb .set 0000014H ; tb constant
tms_kc .set 0000015H ; Control constant
tms_kcb .set 0000016H ; Control constant
tms_bt .set 0000017H ; Control constant
tms_bi .set 0000018H ; Control constant

tms mode .set 0000019H ;Mode
tms_swp_120 .set 000001aH ;

UMIN .set 000001eH ; Minimum duty cycle
UMAX .set 000001fH ; Maximum duty cycle
Vdiff .set 0000020H ; Vout-Vref

Vd_int set 0000021H ; integral of Vdiff

hn .set 0000022H ; integrator gain

hv .set 0000023H ; voltage gain

hi set 0000024H ; current gain

il set 0000025H ; sensed inductor current
iout set 0000026H ; sensed output current
Vdiffa set 0000027H ; converter a Vdiff
Vdiffb .set 0000028H ; converter b Vdiff

114

Vd inta .set 0000029H ; converter a Vd_int

Vd_intb .set 000002aH ; converter b Vd_int

Vout .set 000002fH ; converter output

Vin_inv .set 0000030H ;inverse of converter output
vperfreq .set 0000033H ; Volt per frequency ratio
stopfreq set 0000034H ; Target frequecy

stopvolt .set 0000035H ; Target voltage

tms_tboost .set 000003aH ;
tms_acscale .set 000003bH ; convert current
tms_dcscale .set 000003cH ;convert voltage
tms_outputb .set 000003eH ;
tms_ilmin .set 000003fH ;
tblsize .set 000001aH ; Setup table size

*
*

ct_swireg .word 0804000H ; Switching frequency timer

ct_port .word 0804100H ; Timer control register

ct_phasea .word 0804200H ; Phase A timer

ct phaseb .word 0804300H ; Phase B timer

ct_phasec .word 0804400H ; Phase C timer

d_output .word 0804500H ; General purpurse digital output port

inputcs .word 0804900H ; Input voltage and current ADC

acs .word 0804a00H ; Phase a output voltage and current ADC
bes .word 0804b00H ; Phase b output voltage and current ADC
ccs .word 0804c00H ; Phase c output voltage and current ADC
*

cmd_ad int startcmd ;

mode_ad int mode cmd

]
*

mask_int0 .set 0000001H ; Set external interrupt 0 (isr0)
mask _intl .set 0000002H ; Set external interrupt 1 (isr1)
mask_int2 .set 0000004H ; Set external interrupt 2 (isr2)
mask_int3 .set 0000008H ; Set external interrupt 3 (isr3)
mask timer0 .set 0000100H ; Set internal timer 0 interrupt

*

clear main .word 0004444H
reset_out .word 000ffffH
* Define constants

*

swp_const .word 10000000
inv11bits float 0.00048828125
mil float 0.001

H

115

en’
end
AVE
max
min

*

cmd
ctio
lookup
varible

float 0.0000001
float 0.0001
float 0.2

float 0.95

float 0.05

.usect "dualport",10000h
.usect "xbus",2000h
.usect "ram1",400h
.usect "ram2",400h

text

init: LDI 0,DP

LDI 00H,ST

LDI 0000H,IE

LDI @ctrl,ARO

LDI @xbus,R0O

STI RO,*+ARO0(60H)
LDI @pbus,R0

STI RO,*+ARO0(64H)
LDI @stck,SP
CALL init_ct

LDI @d_output,ARO

-LDI 00FFH,RO

STI RO,*ARO

LDI @ct_port,ARO
LDI @reset_out,R0O
STI RO,*ARO

LDI @ctrl,ARO
LDI @blkl,AR3
LDI @dp_mem,AR4
LDI @blk0,ARS
LDI @sram,AR7
LDI @dp_cint,IR0O
LDI *+AR4(IR0),R0
LDI 000H,RO
RPTS 2047

STI RO,*AR4++(1)
LDI @dp_mem,AR4
LDI 0000H,IF

LDI 0008H,IE

OR 02000H,ST

begin: NOP

NOP
NOP

; Point the DP register to page 0

; Clear and enable cache, and disable OVM (1800h)
; Clear all interrupts

; Load peripheral bus memory-mapped reg

; Init expansion bus control reg

; Init primary bus control reg

; Initialize the stack pointer

; Init counter/timer

; Pointer for counter/timer control register

; Disable all output

; Sratch pad memory area

; Top of dual port memory

; Sratch pad memory area

; Top of the look up table

; Clear dual port memory interrupt
; Clear sram memory

b

; Top of dual port memory

; Clear all flags

; Enable interrupt 3 (dual port memory)
; Global interrupt enable

116

NOP
BR begin

* NSWC code)
* Initialize counter/timer

init_ct: LDI @ct_port,ARO ; Pointer for counter/timer control register
LDI 00ffH,RO ;
STI RO,*ARO ; Disable all counter/timer output
LDI @ct_swfreg,ARO ; Pointer for switching frequency timer 1
LDI 0034H,RO ; Mode 2 (rate generator), 00110100B
STI RO,*+ARO0(3) ;
LDI 0074H,RO ; 01110100B
STI RO,*+ARO0(3) ;
LDI 00b4H,RO ; 10110100B
STI RO,*+ARO(3) ;
LDI @ct_phasea,AR0 ; Pointer for phase a counter

LDI 0012H,RO ; Mode 1 (hardware retriggerable one-shoot), 000100108
STI RO,*+ARO0(3)

.
1

LDI 0052H,R0 : Mode 1, R/W LSB, 01010010B
STI RO,*+AR0(3) ;
LDI 00b2H,R0 : Mode 1, R/W LSB & MSB, 10110010B

STI RO,*+ARO0(3) ;
LDI @ct_phaseb,AR0O ; Pointer for phase b counter

LDI 0012H,RO ; Mode 1 (hardware retriggerable), R/W LSB, 00010010B
STI RO,*+ARO0(3)

2

LDI 0052H,R0 ; Mode 1, R/W LSB, 01010010B

STI RO,*+ARO0(3) ;

LDI 00b2H,R0O ; Mode 1, R/W LSB & MSB, 10110010B
STI RO,*+ARO0(3) ;

LDI @ct_phasec,ARO ; Pointer for phase ¢ counter

LDI 0012H,RO ; Mode 1 (hardware retriggerable), R/W LSB, 00010010B
STI RO,*+ARO0(3)

2

LDI 0052H,R0O ; Mode 1, R/W LSB, 01010010B
STI RO,*+ARO0(3) ;
LDI 00b2H,R0O ; Mode 1, R/W LSB & MSB, 10110010B
STI RO,*+ARO0(3) ;
RETS
*(NSWC code)
*Modified 25 Feb 97
read_cmd: LDI *+AR4(1),R0 ; Check command
AND O0FFH,RO0 ; Clear all other bits
CMPI 01EH,RO ;
BHS stopinit ; Ignore command if command >= 23

117

LDl @cmd ad,R1 ;
ADDI R1,R0 ;
BNZ RO
stopinit: RETS
*
startcmd: BR c¢md0 ; Off
BR cmd0
BR cmd0
BR cmd0
BR cmd0
BR cmd0
BR cmd0
BR cmd0
BR cmd0
BR cmd0
BR cmdl0 ; DC to DC Buck
BR c¢md0
BR cmd0
BR cmd0
BR cmd0
BR cmd0
BR cmd0
BR cmd0
BR c¢md0
BR c¢md0
BR cmd0
BR cmd0
BR cmd0
BR cmd0
BR c¢md0
BR c¢md0
BR cmd0
BR cmd0
BR c¢md0
BR cmd0
BR cmd0
BR cmd0
RETS
%k
* Turning off ARCP
*(INSWC code)
cmd0: LDI 08H,IE ; Disable interrupts 0,1,2
LDI @ct_port,ARO ; Pointer for counter/timer control register
LDI @clear_main,R0O ;

118

wait20:

*

STI RO,*ARO

LDI 030H,RO
SUBI 01H,RO

BNZ wait20

LDI @reset_out,R0
STI RO,*ARO
CALL init_ct

LDI 00H,RO

STI RO,*+AR4(1)
LDI @dp_int,IR0
STI RO,*+AR4(IR0)
LDI @d_output,ARO
LDI OFFFH,RO

STI RO,*ARO

LDI @ct_port,ARO
LDI @reset_out,R0O
STI RO,*ARO
RETS

* DC to DC Buck Converter
*(NPS code 5 May 97)
cmd10: LDI 08H,IE

LDI @ct_port,ARO
LDI @clear_main,RO
STI RO,*ARO

LDI 030H,RO

wait210: SUBI 01H,RO

BNZ wait210

LDI @reset_out,R0O

STI RO,*ARO

CALL init_ct

CALL save_setup

CALL init swct

LDI *+AR3(tms swp),R0
FLOAT RO

LDF @max,R1

MPYF RO,R1

STF R1,*+AR3(UMAX)
MPYF @min,RO

STF RO,*+AR3(UMIN)
LDI *+AR3(tms_Vref),R0O
FLOAT RO

RND RO

; Disable all output
STI RO,*+AR3(tms_outputb)

>

>

5
b

; Disable all counter/timer output

; Pointer for counter/timer control register

; Disable all output

E

; Disable interrupts 0,1,2
; Pointer for counter/timer control register

; Disable all output

; Disable all counter/timer output

; Save data in 32-bit format

; Init switching frequency counters

*

STF RO,*+AR3(tms_Vref)

* start up ramp function

*

LDI *+AR3(tms_step),R0
STI RO,*+AR3(stopfreq)
LDI 000H,RO

STI RO,*+AR3(tms_stepx)
LDI *+AR3(stopfreq),R0
FLOAT RO

CALL FPINV

MPYF *+AR3(tms_Vref),R0
RND RO

STF RO0,*+AR3(vperfreq)
LDF 0000,R0

STF RO,*+AR3(tms_Vref)
LDI @ctrl,ARO

mapped reg

*

LDI *+AR3(tms_delay),R0
MPYI 064H,RO

STI RO,*+ARO0(28H)

LDI @timOctl,RO

STI RO,*+ARO(20H)

* voltage and current scaling

*

*

LDI *+AR3(tms_dcs),R0
FLOAT RO

MPYF @inv11bits,R0O
RND RO

STF RO,*+AR3(tms_dcscale)
LDI *+AR3(tms_acs),R0
FLOAT RO

MPYF @inv11bits,R0O
RND RO

STF RO,*+AR3(tms_acscale)

* define hi, hn, hv and T/2
*
LDI *+AR3(tms_swf),R0
FLOAT RO
MPYF 2.0,R0
CALL FPINV
LDI *+AR3(tms_kc),R1

120

; Startup

; Load peripheral bus memory-

H
.
b
H
>

; Init internal timer O

; RO = fsw

; RO = 2*fsw =2*fsamp
; RO=1/R0

s

FLOAT R1

STI RO,*+AR4(1)
LDI @dp int,JRO
STI RO,*+AR4(IR0)

2

b4

MPYF @en4,R1 ; hn

MPYF R1,R0 ;

RND RO ;

STF RO,*+AR3(hn) ; hn*T/2

LDI *+AR3(tms_kcb),R0O

FLOAT RO

MPYF @en7,R0

RND RO

STF RO,*+AR3(hv) ; hv

LDI *+AR3(tms_bt),R0

FLOAT RO

MPYF @en4,R0

RND RO

STF RO,*+AR3(hi) ; hi

LDF 0.0,R0 ;

STF RO,*+AR3(Vdiffa) ; Initialize Vdiff

STF RO,*+AR3(Vd_inta) ; Initialize Vd_int

STF RO,*+AR3(Vdiffb) ; Initialize Vdiff

STF RO,*+AR3(Vd _intb) ; Initialize Vd_int

LDI @ct_port,ARO ; Pointer for counter/timer control register
LDI 00300H,RO ; 1100000 (disable phase C)
STI RO,*ARO ; Enable all counter/timer output
STI RO,*+AR3(tms_outputb)
LDI O010bH,IE ; Enable interrupts 0,1,3,8
LDI 01H,RO ;

.
b

RETS ;
*(NSWC code) Modified 5 May 97
save_setup: LDI tblsize,RC ; Init loop counter
RPTB save dp ;
LDI *AR4++(1),R0 ; Start at the top of the dual port memory
AND O0ffH,RO ; Mask out all higher bits
LSH 08H,RO ; Rotate 8 bits to the left
LDI *AR4++(1),R1 ; Get LSB
AND OffH,R1 ;
OR RO,R1 ;
save_dp: STI RI1,*AR3++(1) ; Save 32-bit data in internal RAM
LDI @dp_mem,AR4 . ; Reset AR4

LDI @blkl,AR3 ; Reset AR3
LDI *+AR3(tms_swf),R1 ;
LDI @swp_const,R0 ; Determine switching period

CALL divi ;
STI RO,*+AR3(tms_swp) ;
LDI 02H,R1 ;
CALL divi ;
ADDI 10H,RO ;
STI RO,*+AR3(tms_swp 120)
LDI *+AR3(tms_swp),R0 ;
LDI RO,R1 ; Determine ta
LSH -1H,R0 ;
STI RO,*+AR3(tms ta)
LDI *+AR3(tms_dt),R0 ; Determine tb
LSH 01H,RO ;
SUBI RO,R1
LSH -1H,R1 ;
FLOATRI1 :
RND RI1 ;
STF RI1,*+AR3(tms_tb) ;
LDI *+AR3(tms_of),R0 ; Determine stepx
LDI *+AR3(tms_blk),R1
MPYI R1,R0
LDI *+AR3(tms_swf),R1
CALL divi
STI RO,*+AR3(tms_stepx);
LDI *+AR3(tms_btime),R1
STI R1,*+AR3(tms_tboost)
LDI *+AR3(tms_oaci),R2 ;
FLOAT R2
STF R2,*+AR3(tms_ilmin)
RETS
*(NSWC code)
init_swct:LDI @ct_swifreg,ARO ; Pointer for switching frequency timer 1
LDI *+AR3(tms_swp),R0 ;
STI RO,*+ARO0(0) ; Store LSB of counter 0
LSH -08H,RO ;
STI RO,*+ARO0(0) ; Store MSB of counter 0
NOP
NOP
NOP
LDI *+AR3(tms_swp 120),R2 ;
checkout0:LDI 0000H,RO ;

STI RO,*+ARO0(3) ; Latch command

LDI *+AR0(0),R0 ;

AND 000FFH,R0 ; Clear all other higher bits
LDI *+ARO0(0),R1 ;

122

checkout1:LDI 0040H,RO

LSH 0008H,R1

AND 00f00H,R1

OR RI1,R0

CMPI R2,R0

BGT checkout(

LDI *+AR3(tms_swp),R0 ;
STI RO,*+ARO0(1)

LSH -0008H,R0

STI RO,*+ARO(1)

NOP

NOP

NOP

LDI *+AR3(tms_swp_ 120),R2;

STI RO,*+ARO0(3)
LDI *+ARO(1),R0
AND 000FFH,RO
LDI *+ARO0(1),R1
LSH 0008H,R1
AND 00f00H,R1
OR R1,RO
CMPI R2,R0

BGT checkoutl
LDI *+AR3(tms_swp),R0 ;
STI RO,*+ARO0(2)
LSH -0008H,R0
STI RO,*+AR0(2)

LDI @ct_phasea,AR0

LDI *+AR3(tms_btime),R1;
STI R1,*+ARO0(0)

LDI *+AR3(tms_bdly),R1 ;
ADDI *+AR3(tms_btime),R1
STI R1,*+ARO0(1)

LDI *+AR3(tms_ta),R1

STI R1,*+AR0(2)

LSH -08H,R1

STI R1,*+AR0(2)

LDI @ct_phaseb,ARO
LDI *+AR3(tms_btime),R1;
STI R1,*+AR0(0)

LDI *+AR3(tms_bdly),R1 ;

b

ADDI *+AR3(tms_btime),R1

; Store LSB of counter 1

H

; Store MSB of counter 1

; Latch command

; Clear all other higher bits

b

; Store LSB of counter 2
; Store MSB of counter 2

; Pointer for phase a counter

; Store LSB of counter 0

; Store LSB of counter 1
; Store LSB of counter 2
; Store MSB of counter 2

; Pointer for phase b counter

; Store LSB of counter 0

123

STI R1,*+ARO0(1) ; Store LSB of counter 1

LDI *+AR3(tms_ta),R1 ;
STI R1,*+AR0(2) ; Store LSB of counter 2
LSH -08H,R1 ;
STI R1,*+AR0(2) ; Store MSB of counter 2
*
LDI @ct_phasec,ARO ; Pointer for phase ¢ counter
LDI *+AR3(tms_btime),R1;
STI R1,*+ARO0(0) ; Store LSB of counter 0

LDI *+AR3(tms_bdly),R1 ;
ADDI *+AR3(tms_btime),R1 ;

STI R1,*+AR0(1) ; Store LSB of counter 1

LDI *+AR3(tms ta),R1;

STI R1,*+AR0(2) ; Store LSB of counter 2

LSH -08H,R1 ;

STI R1,*+ARO0(2) ; Store MSB of counter 2

LDI *+AR3(tms_btime),R0O ;
STI RO,*+AR3(tms_tboost);
RETS
*(INSWC code) Modified 25 Feb 97
isr_ mode: LDI *+AR3(tms_mode),R0
LDI @mode _ad,R1
ADDI R1,R0
BNZ RO
RETS
*
mode _cmd: BR mode0 ; Stop
BR mode0
BR mode0
BR mode0
BR mode0
BR mode0
BR mode0
BR mode0
BR mode0
BR model
BR model0 ; DC to DC Buck Mode
BR mode0
BR mode0

mode0: LDI 08H,IE ; Disable interrupts 0,1,2
LDI @ct_port,ARO ; Pointer for counter/timer control register
LDI @clear_main,R0O ;
STI RO,*ARO ; Disable all output

124

LDI 030H,RO

wait30: SUBI 01H,RO ;
BNZ wait30 ;
LDI @reset_out,R0 ;
STI RO,*ARO ; Disable all counter/timer output
AND O8H,IF ; Clear all pending interrupts 0,1,2
LDI 00H,RO ;
STI RO,*+AR4(1) ;
LDI @dp_int,IRO ;
STI RO,*+AR4(IR0) ;
RETS ; Return
%
* DC to DC Buck Converter
*(NPS code) 5 May 97
model0: LDF *+AR3(tms_Vref),R0 ;RO=Vref
LDF *+AR3(Vin_inv),R1 ;R1=1/Vin
LDF *+AR3(Vout),R2 ;R2=Vout
LDF *+AR3(Vdiff),R3 ;¥R3= Vdiff(n-1)
LDF *+AR3(L),R6 ;R6 =1L
SUBF *+AR3(iout),R6 ;R6 =iL-iout

MPYF *+AR3(hi),R6

MPYF3 RO,R1,R4
SUBF3 RO,R2,R5
ADDF R5,R3

MPYF *+AR3(hn),R3

[Vdiff(n)+Vdiff(n-1)]

LOW: CMPF *+AR3(UMIN),R7

SAME:

ADDF *+AR3(Vd_int),R3

;R6 = hi(iL-iout)

;R4= Dss=Vref/Vin

;R5= Vdiff(n) =Vout-Vref
;¥R3= Vdiff(n)+Vdiff(n-1)
;¥R3= Vd_int=KcT/2

;*R3=Vd_int(n) = Vd_int + Vd_int(n-1)

;R4=D=Dss-Vd_int
;R4 = Dss - Vd_int - hi(iL-iout)

;R6 =hv

;R6 =hv(Vout-Vref)

R4 =Dss - Vd_int - hi(iL-iout) - hv(Vout-Vref)

3

SUBF R3,R4

SUBF R6,R4

LDF *+AR3(hv),R6
MPYF R5,R6

SUBF Ré6,R4

LDI *+AR3(tms_swp),R7 ;
FLOAT R7

MPYF R7,R4

SUBF R4,R7

CMPF *+AR3(UMAX),R7

BLE LOW

LDF *+AR3(UMAX),R7
BGT SAME

LDF *+AR3(UMIN),R7
FIX R7

RETS

125

* (NSWC code)
time0: PUSH RO

PUSHF RO

PUSH ARO

LDI *+AR3(tms_stepx),R0

ADDI 01H,R0

STI RO,*+AR3(tms_stepx)

CMPI *+AR3(stopfreq),R0

BLE looptimer0

LDI 000H,RO

LDI @ctrl,ARO

STI RO,*+AR0(20H) ; Clear counter
ANDNmask_timer0,IE ; Disable timer interrupt
POP ARO

POPF RO

POP RO

RETI

looptimer0: LDF *+AR3(vperfreq),R0

%

ADDF *+AR3(tms_Vref),R0

RND RO

STF RO,*+AR3(tms_Vref)
POP ARO

POPF RO

POP RO

RETI

* isr0: Phase a interrupt service rountine
*(NPS code) 5 May 97
isr0: PUSH ST ; Save registers

PUSH IR1
PUSH R7
PUSHF R7
PUSH Ré6
PUSHF R6
PUSH R5
PUSHF RS
PUSH R4
PUSHF R4
PUSH R3
PUSHF R3
PUSH R2
PUSHF R2
PUSH R1
PUSHF R1

126

wait: SUBI

*

PUSH RO
PUSHF
PUSH ARO
LDI

LDI

LDI

LDI

LDI
01H,R2
BNZ

RO

@bcs,ARO
@ccs,AR2
*ARO,RO
*AR2,R1
00cH,R2

wait

* STORE SAMPLED VOLTAGES AND CURRENTS

*

waitl: SUBI

LDI
LDI
LDI
LSH
ASH
FLOAT
LSH
ASH
FLOAT
LDI
LSH
ASH
FLOAT
LSH
ASH
FLOAT
LDI
O01H,R7
BNZ
LDI
LDI
LDI
LSH
ASH
FLOAT
LSH
ASH
FLOAT
LDI
LSH
ASH

*ARO,R0O
*AR2,R2
RO,R1
04H,R1
-14H,R1
R1
14H,RO
-14H,R0
RO
R2,R3
04H,R3
-14H,R3
R3
14H,R2
-14H,R2
R2
009H,R7

waitl
*ARO,R4
*AR2,R6
R4,R5
04H,R5
-14H,R5
R5
14H,R4
-14H,R4
R4
R6,R7
04H,R7
-14H,R7

; Pointer for DC ADC

; initiat conversion

; READ Vin AND iL

; Getting Vin (J7)

; RO=Vin

; R3 =iout

; Getting Vout
; R2=Vout

Q)

; READ Vin AND iL

;R5=iL

; Getting Vin (J7)

; R4=Vin

; R7 =1iout

wait2: SUBI

wait3: SUBI

FLOAT

LSH

ASH
FLOAT
ADDF R4,R0
ADDF R5,R1
ADDF R6,R2
ADDF R7,R3
LDI

01H,R7
BNZ:

LDI

LDI

LDI

LSH

ASH
FLOAT

LSH

ASH

FLOAT

LDI

LSH

ASH
FLOAT

LSH

ASH
FLOAT
ADDF R4,R0
ADDF R5,R1
ADDF R6,R2
ADDF R7,R3
LDI

01H,R7

BNZ

LDI

LDI

LDI

LSH

ASH
FLOAT

LSH

ASH
FLOAT

LDI

R7
14H,R6
-14H,R6
R6

009H,R7

wait2
*ARO,R4
*AR2,R6
R4,R5
04H,R5
-14H,R5

14H,R4
-14H,R4
R4
R6,R7
04H,R7
-14H,R7
R7
14H,R6
-14H,R6
R6

009H,R7

wait3
*ARO,R4
*AR2,R6
R4,R5
04H,R5
-14H,R5
R5
14H,R4
-14H,R4
R4
R6,R7

; Getting Vout (J1)
; R6=Vout

:RO=Vin (2)
:R1=iL (2)

; R2=Vout (2)
; R3 =1iout (2)

; READ Vin AND iL

; RS=i1L

; Getting Vin (J7)
; R4 =Vin

; R7 =1iout
; Getting Vout (J1)

; R6 = Vout

; RO=Vin (3)
;R1=iL (3)

; R2=Vout (3)
; R3=1out (3)

; READ Vin AND iL

;R5=I1L

; Getting Vin (J7)
; R4=Vin

128

LSH 04H,R7

ASH -14H,R7

FLOAT R7

LSH 14H,R6

ASH -14H,R6

FLOAT R6

ADDF R4,R0

ADDF R5,R1

ADDF R6,R2

ADDF R7,R3

LDI 009H,R7
wait4: SUBI 01H,R7

BNZ wait4

LDI *ARO,R4

LDI *AR2,R6

LDI R4,RS

LSH 04H,R5

ASH -14H,R5

FLOAT RS

LSH 14H,R4

ASH -14H,R4

FLOAT R4

LDI R6,R7

LSH 04H,R7

ASH -14H,R7

FLOAT R7

LSH 14H,R6

ASH -14H,R6

FLOAT R6

ADDF R4,R0

ADDF R5,R1

ADDF R6,R2

ADDF R7.R3

MPYF @AVE,R1

MPYF *+AR3(tms_acscale),R1

RND R1

STF R1,*+AR3(iL)
CURRENT iL

MPYF @AVE,R3

MPYF *+AR3(tms_acscale),R3

RND R3

STF R3,*+AR3(iout)
CURRENT iout

MPYF @AVE,R2

129

; R7=1out

; Getting Vout (J1)
; R6 = Vout

; RO=Vin (4)

; R1=i1L (4)

; R2=Vout (4)
; R3 =iout (4)

; READ Vin AND iL
;R5=iL

; Getting Vin (J7)
; R4=Vin

; R7 =1iout

; Getting Vout (J1)
; R6 = Vout

: RO = Vin (5)
:R1=iL (5)

; R2=Vout (5)
; R3 =iout (5)

; STORE THE INDUCTOR

; STORE THE OUTPUT

Vout

MPYF *+AR3(tms_dcscale),R2

RND R2 ;

STF R2,*+AR3(Vout) ; STORE Output voltage
MPYF @AVE,RO

MPYF *+AR3(tms_dcscale),R0

CALL FPINV

RND RO

STF RO,*+AR3(Vin_inv) ; STORE 1/Vin

LDF *+AR3(Vdiftb),R0

STF RO,*+AR3(Vdiff)

LDF *+AR3(Vd_intb),R0

STF RO,*+AR3(Vd _int)

CALL isr_mode ;

LDI @ct_phaseb,AR0 ; Pointer for phase a counter
STI R7,*+AR0(2) ; Store LSB of counter 2
LSH -08H,R7 ;

STI R7,*+AR0(2) ; Store MSB of counter 2
RND R5

STF R5,*+AR3(Vdiftb)

RND R3

STF R3,*+AR3(Vd_intb)

ANDN mask_int0,IF

POP
POPF
POP
POPF
POP
POPF
POP
POPF
POP
POPF
POP
POPF
POP
POPF
POP
POPF
POP
POP
POP
RETI

RO

R1

R2

R3

R4

R5

R6

R7

; Clear interrupt 0
ARO
RO
R1
R2
R3
R4
RS
R6
R7
IR1

ST
; Return and enable interrupt

130

*
*

* isrl: Phase B interrupt service rountine

*(NPS code) 5 May 97
isrl: PUSH ST ; Save registers
PUSH IR1
PUSH R7
PUSHF R7
PUSH R6
PUSHF R6
PUSH RS
PUSHF RS
PUSH R4
PUSHF R4
PUSH R3
PUSHF R3
PUSH R2
PUSHF R2
PUSH R1
PUSHF R1
PUSH RO
PUSHF RO
PUSH AR0
*
LDI @inputcs,AR0 ; Pointer for DC ADC
LDI @acs,AR2
LDI *ARO,RO ; initiat conversion
LDI *AR2,R1
LDI 00cH,R2
wait5: SUBI 01H,R2
BNZ wait5

*

* STORE SAMPLED VOLTAGES AND CURRENTS

*

LDI *ARO,RO ; READ Vin AND iL
LDI *AR2,R2

LDI RO,R1

LSH 04H,R1 ;R1=iL

ASH -14H,R1

FLOAT R1

LSH 14H,R0 : Getting Vin (J7)
ASH -14H,RO : RO = Vin

FLOAT RO

LDI R2,R3

wait6: SUBI

wait7: SUBI

LSH
ASH
FLOAT
LSH
ASH
FLOAT
LDI
01H,R7
BNZ
LDI
LDI
LDI
LSH
ASH
FLOAT
LSH
ASH
FLOAT
LDI
LSH
ASH
FLOAT
LSH
ASH
FLOAT
ADDF R4,R0
ADDF R5,R1
ADDF R6,R2
ADDF R7,R3
LDI
01H,R7
BNZ
LDI
LDI
LDI
LSH
ASH
FLOAT
LSH
ASH
FLOAT
LDI
LSH
ASH

04H,R3
-14H,R3
R3
14H,R2
-14H,R2
R2
009H,R7

waitb
*ARO,R4
*AR2,R6
R4,R5
04H,R5
-14H,R5
R5
14H,R4
-14H,R4
R4
R6,R7
04H,R7
-14H,R7
R7
14H,R6
-14H,R6
R6

009H,R7

wait7
*ARO,R4
*AR2,R6
R4.,R5
04H,R5
-14H,R5
R5
14H,R4
-14H,R4
R4
R6,R7
04H,R7
-14H,R7

; R3 =iout

; Getting Vout (J1)

; R2=Vout

; READ Vin AND iL

; RS =1L

; Getting Vin (J7)
: R4 =Vin

; R7 =1out

; Getting Vout (J1)
; R6=Vout

; RO=Vin (2)
;RI=1iL (2)
; R2=Vout (2)
; R3 =iout (2)

; READ Vin AND iL

; RS =1L

; Getting Vin (J7)
;R4 =Vin

; R7 =1iout

132

wait8: SUBI

wait9: SUBI

FLOAT

LSH

ASH
FLOAT
ADDF R4,R0
ADDF R5,R1
ADDF R6,R2
ADDF R7,R3
LDI

01H,R7

BNZ

LDI

LDI

LDI

LSH

ASH
FLOAT

LSH

ASH
FLOAT

LDI

LSH

ASH
FLOAT

LSH

ASH
FLOAT
ADDF R4,R0
ADDF R5,R1
ADDF R6,R2
ADDF R7,R3
LDI

01H,R7

BNZ

LDI

LDI

LDI

LSH

ASH
FLOAT

LSH

ASH
FLOAT

LDI

R7
14H,R6
-14H,R6
R6

009H,R7

wait8
*ARO,R4
*AR2,R6
R4,R5
04H,R5
-14H,R5
R5
14H,R4
-14H,R4
R4
R6,R7
04H,R7
-14H,R7
R7
14H,R6
-14H,R6
R6

009H,R7

wait9
*ARO,R4
*AR2,R6
R4,R5
04H,R5
-14H,R5
RS
14H,R4
-14H,R4
R4
R6,R7

133

:RO=Vin (3)
:R1=iL (3)

; Getting Vout (J1)
; R6 =Vout

; R2=Vout (3)

; R3 =1out (3)

; RO=Vin (4)
; RI=iL (4)

; READ Vin AND iL

;R5=iL

; Getting Vin (J7)
; R4=Vin

; R7 =1iout

; Getting Vout (J1)
; R6 =Vout

; R2=Vout (4)

; R3 =iout (4)

; READ Vin AND iL

;R5=1L

; Getting Vin (J7)
;R4 =Vin

LSH 04H,R7 ; R7 =1out

ASH -14H,R7

FLOAT R7

LSH 14H,R6 ; Getting Vout (J1)

ASH -14H,R6 ; R6 = Vout

FLOAT R6

ADDF R4,R0 ; RO=Vin (5)

ADDF R5,R1 ; RI=1L (5)

ADDF R6,R2 ; R2=Vout (5)

ADDF R7,R3 ; R3 =1iout (5)

MPYF @AVER1

MPYF *+AR3(tms_acscale),R1

RND R1

STF R1,*+AR3(L) ; STORE THE INDUCTOR
CURRENT iL

MPYF @AVE,R3

MPYF *+AR3(tms_acscale),R3

RND R3

STF R3,*+AR3(iout) ; STORE THE OUTPUT
CURRENT iout

MPYF @AVE,R2

MPYF *+AR3(tms_dcscale),R2

RND R2 ;

STF R2,*+AR3(Vout) ; STORE Output voltage
Vout

MPYF @AVE,RO

MPYF *+AR3(tms_dcscale),R0

CALL FPINV ;

RND RO ;

STF RO,*+AR3(Vin_inv) ; STORE 1/Vin

LDF *+AR3(Vdiffa),R0

STF RO, *+AR3(Vdiff)

LDF *+AR3(Vd_inta),R0

STF RO,*+AR3(Vd_int)

CALL isr_mode ;

LDI @ct_phasea,AR0 ; Pointer for phase a counter

STI R7,*+AR0(2) ; Store LSB of counter 2

LSH -08H,R7 ;

STI R7,*+AR0(2) ; Store MSB of counter 2

RND R5

STF R5,*+AR3(Vdiffa)

RND R3

STF R3,*+AR3(Vd _inta)

ANDNmask intl,IF ; Clear interrupt 1

134

POP ARO

POPF RO
POP RO
POPF RI
POP R1
POPF R2
POP R2
POPF R3
POP R3
POPF R4
POP R4
POPF RS
POP RS
POPF R6
POP R6
POPF R7
POP R7
POP IR1
POP ST
*
RETI ; Return and enable interrupt
*
*
*(INSWC code)
* irs3: Dual port memory interrupt service rountine
*
isr3: PUSH ST ; Save registers
PUSH DP
PUSH IR1
PUSH R7
PUSHF R7
PUSH R6
PUSHF R6
PUSH RS
PUSHF RS
PUSH R4
PUSHF R4
PUSH R3
PUSHF R3
PUSH R2
PUSHF R2
PUSH R1
PUSHF R1

135

.end

PUSH RO
PUSHF

LDI
LDI

ANDNmask_int3,IF

POPF
POP
POPF
POP
POPF
POP
POPF
POP
POPF
POP
POPF
POP
POPF
POP
POPF
POP
POP
POP
POP

RETI

RO

R1

R2

R3

R4

R5

R6

R7

RO

@dp_cint,IR0
*+AR4(IR0),R0
CALL read_cmd

RO
R1
R2
R3
R4
RS
R6
R7
IR1

DP
ST

; Clear interrupt

; Clear interrupt 3

136

; Return and enable interrupt

——

10.

11.

LIST OF REFERENCES

Dade, T.B., “Advanced Electric Propulsion, Power Generation, and Power
Distribution,” Naval Engineers Journal, Vol. 106, No. 2, pp. 83-92, March, 1994.

Blalock, H.C., “Power Electronic Converter Simulation, Real Time Control and
Hardware-In-The-Loop Testing for a Shipboard Integrated Power System,” Electrical
Engineer Thesis, Naval Postgraduate School, Monterey, CA, March, 1995.

Office of Naval Research, PEBB Vision Statement, “Introducing ‘The Second

Electronic Revolution’,” http://web.fie.com/htdoc/fed/onr/any/any/text/any/intro.htm,
November 1996.

Langlois, T.L., The Analysis of Interconnected, High-Power DC-to-DC Converters
for DC Zonal Electrical Distribution, Master’s Thesis, Naval Postgraduate School,
Monterey, CA, 1997.

Mohan, N., Undeland, T.M., Robbins, W.P., Power Electronics, Converters,
Applications and Design, John Wiley & Sons, Inc, New York, 1989.

International Rectifier, “IRGTI090U06 Ultra-Fast IGBT Data Sheet,” El Segundo,
CA, 1996.

Badorf, M. G., “Power Electronic Building Block Testbed Stability Criteria and
Hardware Validation Studies,” Master’s Thesis, Naval Postgraduate School,
Monterey, CA, 1997.

DeDoncker, R.W., Lyons, J.P., “The Auxiliary Resonant Commutated Pole
Converter,” IEEE-IAS Annual Meeting Proceedings, 1990 pp. 1228-1235.

Mayer J., Salberta, F., High-Frequency Power Electronic Converter For Propulsion

Applications, Dept. of EE and Applied Research Laboratory, Pennsylvania State
University, University Park, PA.

Oberley, M. J., “The Operation and Interaction of the Auxiliary Resonant
Commutated Pole Converter in a Shipboard DC Power Distribution Network,”
Master’s Thesis, Naval Postgraduate School, Monterey, CA, 1996.

Salerno, B.D., “Controller Design, Analysis, and Prototype for Ship Service

Converter Module,” Master’s Thesis, Naval Postgraduate School, Monterey, CA,
1996.

137

12. Ifeachor, E.C., Jervis, B.W., Digital Signal Processing A Practical Approach,
Addison-Wesley Publishers Ltd., 1993.

13. SPECTRUM Signal Processing Inc., TMS320C30 SYSTEM BOARD User’s Manual,
Loughborough, England., August 1990.

14. DSP-CITeco, LD31/LD3INET User’s Guide Version 1.0, dSPACE digital signal
processing and control engineering GmbH, Paderborn, Germany, 1993.

15. NSWC/CDAD Schematics, Code 813, Annapolis, 1995.

16. Texas Instruments, “TMS320C3x User’s Guide,” Texas Instruments, Inc., 1994.
17. MAXIM, “MAX120/MAX122 Data Sheet,” Sunnyvale, CA, 1994.

18. Intel, “MCS - 51 Macro Assembler User’s Guide for DOS Systems,” Intel Corp.

19. Texas Instruments, “TMS320 Floating-Point DSP Optimizing Compiler,” Texas
Instruments, Inc., 1991.

20. Texas Instruments, “TMS320 Floating-Point DSP Assembly Language Tools,” Texas
Instruments, Inc., 1991.

21. Texas Instruments, “TMS320C3X C Source Debugger,” Texas Instruments, Inc.,
1993.

22. Harris Semiconductor, “82C54 CMOS Programmable Interval Timer Data Sheet,”
Melbourne, F1, 1996.

138

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.........oovvvveiviiiiiiieirannnnn 2
8725 John J. Kingman Rd., STE 0944
Fort Belvoir, Virginia 22060-6218

Dudley Knox Library.......ccccoviiniiiiiiiiiiiiiiiirce e, 2
Naval Postgraduate School

411 Dyer Rd.

Monterey, California 93943-5101

Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5121

John Ciezki, Code EC/CY.....ouiviiiriiiiiiiiiiiiiicneeeeieeeae
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, California 93943-5121

Robert Ashton, Code EC/AR........oiuviuiiiiii e aeaanns 2
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5121

Roberto Cristi, Code EC/CX..uuuiiniiiiiiiiiie e e
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, California 93943-5121

ROEr COOlEY.....eniiiiiiii i,
Naval Surface Warfare Center

Carderock Division/Annapolis Detachment

3A Leggett Circle

Annapolis, MD 21402-5067

Tuan Duong......cocvviiniiiiii e,
Naval Surface Warfare Center

Carderock Division/Annapolis Detachment Code 813

3A Leggett Circle

Annapolis, MD 21402-5067

139

RoNald J. HanSom. cuv oottt e

¢/o Earl C. Hanson
10810 Spirit Lake Rd
Grantsburg, WI 54840

140

